Glasnik Matematicki, Vol. 44, No.2 (2009), 309-321.
SOLUTIONS OF A CLASS OF QUARTIC THUE
INEQUALITIES
Bo He, Borka Jadrijević and Alain Togbé
Department of Mathematics, ABa Teacher's College, Wenchuan, Sichuan, 623000,
P. R. China
e-mail: bhe@live.cn
Faculty of Science, Department of Mathematics,
University of Split, Teslina 12, 21000 Split, Croatia
e-mail: borka@pmfst.hr
Mathematics Department, Purdue University North Central,
1401 S, U.S. 421, Westville IN 46391, USA
e-mail: atogbe@pnc.edu
Abstract. Let c be a positive integer. In this paper, we use the method
of Tzanakis to transform the quartic Thue inequality
|x4 - 4x3y -
(2c-2)x2y2 +
(4c+4)xy3 - (2c-1)y4|
≤ max{c/4, 4}
into systems of Pellian equations.
Then we find all primitive solutions of this inequality using continued fractions.
2000 Mathematics Subject Classification.
11D59, 11D09, 11D75, 11A55.
Key words and phrases. Thue inequalities, method of Tzanakis, continued fractions.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.2.04
References:
- A. Baker,
Contribution to the theory of Diophantine
equations. I. On the representation of integers by binary forms,
Philos. Trans. Roy. Soc. London Ser. A 263 (1968),
173-191.
MathSciNet
CrossRef
- A. Baker and H. Davenport,
The equations 3x2-2=y2
and 8x2-7=z2,
Quart. J. Math. Oxford 20 (1969), 129-137.
MathSciNet
CrossRef
- J. H. E. Cohn,
Twelve Diophantine equations, Arch. Math.
65 (1995), 130-133.
MathSciNet
CrossRef
- J. H. E. Cohn,
The Diophantine equation x4-Dy2=1 II,
Acta Arith. 78 (1997), 401-403.
MathSciNet
- A. Dujella,
Continued fractions and RSA with small secret exponent,
Tatra Mt. Math. Publ. 29 (2004), 101-112.
MathSciNet
- A. Dujella and B. Ibrahimpasic,
On Worley's theorem in Diophantine
approximations, Ann. Math. Inform. 35 (2008), 61-73.
MathSciNet
- A. Dujella and B. Jadrijevic,
A parametric family of
quartic Thue equations, Acta Arith. 101 (2002), 159-169.
MathSciNet
CrossRef
- A. Dujella and B. Jadrijevic,
A family of quartic Thue
inequations, Acta Arith. 111 (2004), 61-76.
MathSciNet
CrossRef
- A. Dujella, B. Ibrahimpasic and B. Jadrijevic,
Solving a family of quartic Thue inequalities using continued fractions, preprint.
- C. Heuberger, A. Togbé and V. Ziegler,
Automatic solutions of families of Thue equations and an example of degree 8,
J. Symbolic Comput. 38 (2004), 1145-1163.
MathSciNet
CrossRef
- B. Ibrahimpasic,
A parametric family of quartic Thue inequalities, preprint.
- B. Jadrijevic,
A system of Pellian equations and related two-parametric
family of quartic Thue equations,
Rocky Mountain J. Math. 35 (2005), 547-572.
MathSciNet
CrossRef
- B. Jadrijevic and V. Ziegler,
A system of relative Pellian equations and a family of relative Thue
inequations, International Journal of Number theory, 2
(2006), 569-590.
MathSciNet
CrossRef
- M. Daberkow, C. Fieker, J. Kluners, M. E. Pohst, K, Roegner and K. Wildanger,
Kant V4, J. Symbolic Comput. 24 (1997) 267-283.
MathSciNet
CrossRef
- E. Thomas,
Complete solutions to a famaly of cubic Diophantine
equations, J. Number Theory 34 (1990), 235-250.
MathSciNet
CrossRef
- A. Thue,
Über Annäherungswerte algebraischer Zahlen,
J. Reine Angew. Math. 135 (1909), 284-305.
- A. Togbé,
A parametric family of sextic Thue equations, Acta Arith. 125 (2006), 347-361.
MathSciNet
CrossRef
- N. Tzanakis,
Explicit solution of a class
of quartic Thue Equations, Acta. Arith. 64 (1993), 271-283.
MathSciNet
- P. G. Walsh,
A note on a theorem of Ljunggren and the Diophantine equations
x2-kxy2+y4=1,4,
Arch. Math. 73 (1999), 119-125.
MathSciNet
CrossRef
- R. T. Worley,
Estimating |α - p/q|,
J. Austral. Math. Soc. Ser. A 31 (1981), 202-206.
MathSciNet
CrossRef
- V. Ziegler,
On the certain
family of quartic equations with three parameters,
Glas. Mat. Ser. III 41(61) (2006), 9-30.
MathSciNet
CrossRef
Glasnik Matematicki Home Page