Glasnik Matematicki, Vol. 44, No.2 (2009), 309-321.

SOLUTIONS OF A CLASS OF QUARTIC THUE INEQUALITIES

Bo He, Borka Jadrijević and Alain Togbé

Department of Mathematics, ABa Teacher's College, Wenchuan, Sichuan, 623000, P. R. China
e-mail: bhe@live.cn

Faculty of Science, Department of Mathematics, University of Split, Teslina 12, 21000 Split, Croatia
e-mail: borka@pmfst.hr

Mathematics Department, Purdue University North Central, 1401 S, U.S. 421, Westville IN 46391, USA
e-mail: atogbe@pnc.edu


Abstract.   Let c be a positive integer. In this paper, we use the method of Tzanakis to transform the quartic Thue inequality

|x4 - 4x3y - (2c-2)x2y2 + (4c+4)xy3 - (2c-1)y4| ≤ max{c/4, 4}

into systems of Pellian equations. Then we find all primitive solutions of this inequality using continued fractions.

2000 Mathematics Subject Classification.   11D59, 11D09, 11D75, 11A55.

Key words and phrases.   Thue inequalities, method of Tzanakis, continued fractions.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.2.04


References:

  1. A. Baker, Contribution to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173-191.
    MathSciNet     CrossRef

  2. A. Baker and H. Davenport, The equations 3x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford 20 (1969), 129-137.
    MathSciNet     CrossRef

  3. J. H. E. Cohn, Twelve Diophantine equations, Arch. Math. 65 (1995), 130-133.
    MathSciNet     CrossRef

  4. J. H. E. Cohn, The Diophantine equation x4-Dy2=1 II, Acta Arith. 78 (1997), 401-403.
    MathSciNet

  5. A. Dujella, Continued fractions and RSA with small secret exponent, Tatra Mt. Math. Publ. 29 (2004), 101-112.
    MathSciNet

  6. A. Dujella and B. Ibrahimpasic, On Worley's theorem in Diophantine approximations, Ann. Math. Inform. 35 (2008), 61-73.
    MathSciNet

  7. A. Dujella and B. Jadrijevic, A parametric family of quartic Thue equations, Acta Arith. 101 (2002), 159-169.
    MathSciNet     CrossRef

  8. A. Dujella and B. Jadrijevic, A family of quartic Thue inequations, Acta Arith. 111 (2004), 61-76.
    MathSciNet     CrossRef

  9. A. Dujella, B. Ibrahimpasic and B. Jadrijevic, Solving a family of quartic Thue inequalities using continued fractions, preprint.

  10. C. Heuberger, A. Togbé and V. Ziegler, Automatic solutions of families of Thue equations and an example of degree 8, J. Symbolic Comput. 38 (2004), 1145-1163.
    MathSciNet     CrossRef

  11. B. Ibrahimpasic, A parametric family of quartic Thue inequalities, preprint.

  12. B. Jadrijevic, A system of Pellian equations and related two-parametric family of quartic Thue equations, Rocky Mountain J. Math. 35 (2005), 547-572.
    MathSciNet     CrossRef

  13. B. Jadrijevic and V. Ziegler, A system of relative Pellian equations and a family of relative Thue inequations, International Journal of Number theory, 2 (2006), 569-590.
    MathSciNet     CrossRef

  14. M. Daberkow, C. Fieker, J. Kluners, M. E. Pohst, K, Roegner and K. Wildanger, Kant V4, J. Symbolic Comput. 24 (1997) 267-283.
    MathSciNet     CrossRef

  15. E. Thomas, Complete solutions to a famaly of cubic Diophantine equations, J. Number Theory 34 (1990), 235-250.
    MathSciNet     CrossRef

  16. A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.

  17. A. Togbé, A parametric family of sextic Thue equations, Acta Arith. 125 (2006), 347-361.
    MathSciNet     CrossRef

  18. N. Tzanakis, Explicit solution of a class of quartic Thue Equations, Acta. Arith. 64 (1993), 271-283.
    MathSciNet

  19. P. G. Walsh, A note on a theorem of Ljunggren and the Diophantine equations x2-kxy2+y4=1,4, Arch. Math. 73 (1999), 119-125.
    MathSciNet     CrossRef

  20. R. T. Worley, Estimating |α - p/q|, J. Austral. Math. Soc. Ser. A 31 (1981), 202-206.
    MathSciNet     CrossRef

  21. V. Ziegler, On the certain family of quartic equations with three parameters, Glas. Mat. Ser. III 41(61) (2006), 9-30.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page