Glasnik Matematicki, Vol. 44, No.1 (2009), 241-254.

STABILITY IS A WEAK SHAPE INVARIANT

Nikica Uglešić

University of Zadar, Pavlinovićeva bb, 23000 Zadar, Croatia
e-mail: nuglesic@unizd.hr


Abstract.   We prove that the stability is a weak (and thus, a coarse as well) shape invariant in all (standard and abstract) cases.

2000 Mathematics Subject Classification.   55P55, 57N25.

Key words and phrases.   Shape, coarse shape, weak shape, stability.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.1.15


References:

  1. D. A. Edwards and R. Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521-535, Correction. Ibid. 104 (1976), 389.
    MathSciNet     CrossRef

  2. H. M. Hastings and A. Heller, Splitting homotopy idempotents, in: Shape Theory and Geometric Topology (Dubrovnik, 1981), Lecture Notes in Math. 870}, Springer, Berlin - New York, 1981, 23-36.
    MathSciNet

  3. N. Koceic Bilan, On some coarse shape invariants, submitted.

  4. N. Koceic Bilan and N. Uglesic, The coarse shape, Glas. Mat. Ser. III 42(62) (2007), 145-187.
    MathSciNet     CrossRef

  5. S. Mardesic and J. Segal, Shape Theory, North Holland, Amsterdam, 1982.
    MathSciNet

  6. S. Mardesic and N. Uglesic, A category whose isomorphisms induce an equivalence relation coarser than shape, Topology Appl. 153 (2005) 448-463.
    MathSciNet     CrossRef

  7. K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A 12 (1974) 246-258.
    MathSciNet

  8. N. Uglesic and B. Cervar, A subshape spectrum for compacta, Glas. Mat. Ser. III 40(60) (2005), 347-384.
    MathSciNet     CrossRef

  9. N. Uglesic and B. Cervar, The concept of a weak shape type, Int. J. Pure Appl. Math. 39 (2007), 363-428.
    MathSciNet

  10. N. Uglesic and B. Cervar, The Sn-equivalence of compacta, Glas. Mat. Ser. III 42(62) (2007), 195-211.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page