Glasnik Matematicki, Vol. 44, No.1 (2009), 177-185.
A COMPLETE CLASSIFICATION OF FINITE p-GROUPS
ALL OF WHOSE NONCYCLIC SUBGROUPS ARE NORMAL
Zdravka Božikov and Zvonimir Janko
Faculty of Civil Engineering and Architecture, University of Split,
21000 Split, Croatia
e-mail: Zdravka.Bozikov@gradst.hr
Mathematical Institute, University of Heidelberg, 69120 Heidelberg, Germany
Abstract. We give a complete classification of finite
p-groups all of whose noncyclic subgroups are normal, which solves a problem stated by Berkovich.
2000 Mathematics Subject Classification.
20D15.
Key words and phrases. Dedekindian p-groups, Hamiltonian 2-groups,
minimal nonabelian p-groups, central products.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.1.10
References:
- Y. Berkovich,
Groups of prime power order, I and II
(with Z. Janko), Walter
de Gruyter, 2008.
MathSciNet
- Y. Berkovich and Z. Janko,
Structure of finite p-groups with given subgroups,
Contemp. Math. 402 (2006), 13-93.
MathSciNet
- B. Huppert,
Endliche Gruppen I, Die Grundlehren
der Mathematischen Wissenschaften 134, Springer-Verlag, Berlin-New York, 1967.
MathSciNet
- Z. Janko,
Finite 2-groups with exactly four cyclic
subgroups of order 2n, J. Reine Angew. Math. 566 (2004),
135-181.
MathSciNet
CrossRef
- Z. Janko,
On finite nonabelian 2-groups all of
whose minimal nonabelian subgroups are of exponent 4, J. Algebra
315 (2007), 801-808.
MathSciNet
CrossRef
- D. S. Passman,
Nonnormal subgroups of p-groups,
J. Algebra 15 (1970), 352-370.
MathSciNet
CrossRef
Glasnik Matematicki Home Page