Glasnik Matematicki, Vol. 44, No.1 (2009), 141-153.
AN IDEAL-BASED ZERO-DIVISOR GRAPH OF A
COMMUTATIVE SEMIRING
Shahabaddin Ebrahimi Atani
Department of Mathematics, University of Guilan, P.O. Box 1914,
Rasht, Iran
Abstract. There is a natural graph associated to the zero-divisors
of a commutative semiring with non-zero identity. In this article we
essentially study zero-divisor graphs with respect to primal and non-primal
ideals of a commutative semiring R and investigate the interplay between
the semiring-theoretic properties of R and the graph-theoretic properties
of ΓI(R) for some ideal I of R. We also show that the
zero-divisor graph with respect to primal ideals commutes by the semiring
of fractions of R.
2000 Mathematics Subject Classification.
16Y60, 05C75.
Key words and phrases. Semiring, zero-divisor, graph, primal, ideal-based.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.1.07
References:
- D. F. Anderson and P. S. Livingston,
The zero-divisor graph
of a commutative rings, J. Algebra 217 (1999), 434-447.
MathSciNet
CrossRef
- P. Allen, Ideal theory in semirings, Dissertation, Texas
Christian University, 1967.
- L. Dancheng and W. Tongsuo,
On ideal-based zero-divisor graphs,
preprint, 2006.
- S. Ebrahimi Atani,
On primal and weakly primal ideals over
commutative semirings, Glas. Mat. Ser. III 43(63) (2008), 13-23.
MathSciNet
CrossRef
- S. Ebrahimi Atani,
The ideal theory in quotients of commutative
semirings, Glas. Mat. Ser. III 42(62) (2007), 301-308.
MathSciNet
CrossRef
- S. Ebrahimi Atani,
The zero-divisor graph with respect to ideals
of a commutative semirings, Glas. Mat. Ser. III 43(63) (2008), 309-320.
MathSciNet
CrossRef
- S. Ebrahimi Atani and A. Yousefian Darani,
Zero-divisor graphs
with respect to primal and weakly primal ideals, J. Korean Math. Soc.,
46 (2009), 313-325.
- L. Fuchs,
On primal ideals, Proc. Amer. Math. Soc. 1 (1950),
1-6.
MathSciNet
CrossRef
- V. Gupta and J. N. Chaudhari,
Right π-regular semirings, Sarajevo J. Math. 2 (2006), 3-9.
MathSciNet
- J. A. Huckaba,
Commutative rings with zero divisors, Marcel Dekker, Inc., New York, 1988.
MathSciNet
- T. G. Lucas,
The diameter of a zero-divisor graph, J. Algebra
301 (2006), 174-193.
MathSciNet
CrossRef
- J. R. Mosher,
Generalized quotients of hemirings, Compositio
Math. 22 (1970), 275-281.
MathSciNet
- S. P. Redmond,
An ideal-based zero-divisor graph of a commutative
ring, Comm. Algebra 31 (2003), 4425-4443.
MathSciNet
CrossRef
Glasnik Matematicki Home Page