Glasnik Matematicki, Vol. 44, No.1 (2009), 127-140.

COMMUTATIVITY PRESERVING MAPS ON Mn(R)

Ajda Fošner

Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia
e-mail: ajda.fosner@uni-mb.si


Abstract.   We obtain the general form of continuous injective maps on Mn(R), n > 3, that preserve commutativity.

2000 Mathematics Subject Classification.   15A18, 15A27.

Key words and phrases.   Commutativity preserving map, real Jordan canonical form.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.1.06


References:

  1. L. Baribeau and T. Ransford, Non-linear spectrum-preserving maps, Bull. London Math. Soc. 32 (2000), 8-14.
    MathSciNet     CrossRef

  2. M. Bresar, Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525--546.
    MathSciNet     CrossRef

  3. M. Bresar and C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), 695--708.
    MathSciNet

  4. M. D. Choi, A. A. Jafarian and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227--241.
    MathSciNet     CrossRef

  5. A. Fosner, Non-linear commutativity preserving maps on Mn(R), Linear and Multilinear Algebra 53 (2005), 323-344.
    MathSciNet     CrossRef

  6. W. Fulton, Algebraic topology. A first course, Springer, Graduate Texts in Mathematics 153, Springer-Verlag, New York, 1995.
    MathSciNet

  7. R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985.
    MathSciNet

  8. C. K. Li and N. K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl. 162/164 (1992), 217-235.
    MathSciNet     CrossRef

  9. L. Molnár, Selected preserver problems on algebraic structures of linear operators and on function spaces, Springer-Verlag, Berlin, 2007.
    MathSciNet

  10. M. Omladic, H. Radjavi and P. Semrl, Preserving commutativity, J. Pure Appl. Algebra 156 (2001), 309-328.
    MathSciNet     CrossRef

  11. S. Pierce et.al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), 1-129.
    MathSciNet     CrossRef

  12. L. Rodman and P. Semrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear and Multilinear Algebra. 54 (2006), 335-367.
    MathSciNet     CrossRef

  13. P. Semrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), 781-819.
    MathSciNet

  14. P. Semrl, Commutativity preserving maps, Linear Algebra Appl. 429 (2008), 1051-1070.
    MathSciNet     CrossRef

  15. W. Watkins, Polynomial functions that preserve commuting pairs of matrices, Linear and Multilinear Algebra 5 (1977/78), 87-90.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page