Glasnik Matematicki, Vol. 44, No.1 (2009), 89-126.
EXPLICIT INFRASTRUCTURE FOR REAL QUADRATIC
FUNCTION FIELDS AND REAL HYPERELLIPTIC CURVES
Andreas Stein
Institut für Mathematik, Carl-von-Ossietzky Universität Oldenburg,
D-26111 Oldenburg, Germany
e-mail: andreas.stein1@uni-oldenburg.de
Abstract. In 1989, Koblitz first proposed the Jacobian of a
an imaginary hyperelliptic curve for use in public-key cryptographic
protocols. This concept is a generalization of elliptic curve cryptography.
It can be used with the same assumed key-per-bit strength for small genus.
More recently, real hyperelliptic curves of small genus have been introduced as
another source for cryptographic protocols. The arithmetic is more
involved than its imaginary counterparts and it is based on the so-called
infrastructure of the set of reduced principal ideals in the ring of
regular functions of the curve. This infrastructure is an interesting
phenomenon. The main purpose of this article is to explain the
infrastructure in explicit terms and thus extend Shanks'
infrastructure ideas in real quadratic number fields to the case of real
quadratic congruence function fields and their curves. Hereby, we first present an
elementary introduction to the continued fraction expansion of real quadratic
irrationalities and then generalize important results for reduced ideals.
2000 Mathematics Subject Classification.
11R58, 11Y16, 11Y65, 11M38.
Key words and phrases. Real hyperelliptic function field, real hyperelliptic curve,
infrastructure and distance, reduced ideals, regulator, continued fraction expansion.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.1.05
References:
- W. W. Adams and M. J. Razar,
Multiples of points on elliptic curves and continued fractions,
Proc. London Math. Soc. (3) 41 (1980), 481-498.
MathSciNet
CrossRef
- E. Artin,
Quadratische Körper im Gebiete der höheren Kongruenzen I,
Math. Z. 19 (1924), 153-206.
MathSciNet
CrossRef
- E. Artin,
Quadratische Körper im Gebiete der höheren Kongruenzen II,
Math. Z. 19 (1924), 207-246.
MathSciNet
CrossRef
- H. Cohen,
A Course in Computational Algebraic Number Theory,
Springer-Verlag, Berlin, 1993.
MathSciNet
- H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and
F. Vercouteren,
Handbook of Elliptic and Hyperelliptic Curve Cryptography,
Discrete Mathematics and Its Applications 34, Chapman &
Hall/CRC, Boca Raton, 2006.
MathSciNet
- M. Deuring,
Lectures on the Theory of Algebraic Functions of One Variable,
Lecture Notes in Mathematics 314, Springer-Verlag, Berlin-Heidelberg, 1973.
MathSciNet
- A. Enge,
How to distinguish hyperelliptic curves in even characteristic,
in: Public-Key Cryptography and Computational Number Theory,
eds. K. Alster, J. Urbanowicz, and H. C. Williams, De Gruyter, Berlin, 2001, 49-58.
MathSciNet
- S. Erickson, M. J. Jacobson, Jr., N. Shang, S. Shen and A. Stein,
Explicit formulas for real hyperelliptic curves of genus 2 in
affine representation,
in: International Workshop on the Arithmetic of Finite Fields -
WAIFI 2007, Lect. Notes Comput. Sci. 4547, Springer-Verlag, (2007), 202-218.
MathSciNet
- S. K. Gogia and I. S. Luthar,
The Brauer-Siegel theorem for algebraic function fields,
J. Reine Angew. Math. 299/300 (1978), 28-37.
MathSciNet
- M. J. Jacobson, Jr., A. J. Menezes and A. Stein,
Hyperelliptic curves and cryptography,
in: High Primes and Misdemeanours: lectures in honour of the 60th
birthday of Hugh Cowie Williams, Fields Institute Communications 41,
American Mathematical Society, 2004, 255-282.
MathSciNet
- M. J. Jacobson, Jr., R. Scheidler and A. Stein,
Fast arithmetic on hyperelliptic curves via continued fraction
expansions,
in: Advances in Coding Theory and Cryptology, volume 3 of Series on
Coding Theory and Cryptology 2, eds. T. Shaska, W. C. Huffman, D. Joyner, and V. Ustimenko,
World Scientific Publishing Co. Pte. Ltd., Hackensack, New Jersey, 2007, 201-244.
- M. J. Jacobson, Jr., R. Scheidler and A. Stein,
Cryptographic protocols on real hyperelliptic curves,
Adv. Math. Commun. 1 (2007), 197-221.
MathSciNet
CrossRef
- P. Kaplan and K. S. Williams,
The distance between ideals in the orders of a real quadratic field,
Enseign. Math. (2) 36 (1990), 321-358.
MathSciNet
- N. Koblitz,
Hyperelliptic cryptosystems,
J. Cryptology 1 (1989), 139-150.
MathSciNet
CrossRef
- T. Lange,
Formulae for arithmetic on genus 2 hyperelliptic curves,
Appl. Algebra Engrg. Comm. Comput. 15 (2005), 295-328.
MathSciNet
CrossRef
- H. W. Lenstra, Jr.,
On the calculation of regulators and class numbers of quadratic
fields,
London. Math. Soc. Lecture Note Ser. 56 (1982), 123-150.
MathSciNet
- D. Lorenzini,
An invitation to arithmetic geometry, Graduate
Studies in Mathematics 9,
AMS, Providence, 1996.
MathSciNet
- A. J. Menezes, Y. Wu and R. J. Zuccherato,
An elementary introduction to hyperelliptic curves,
in: Koblitz, N.: Algebraic Aspects of Cryptography, Springer-Verlag,
Berlin Heidelberg New York, 1998, 155-178.
MathSciNet
- S. Paulus and H.-G. Rück,
Real and imaginary quadratic representations of hyperelliptic
function fields,
Math. Comp. 68 (1999), 1233-1241.
MathSciNet
CrossRef
- O. Perron,
Die Lehre von den Kettenbrüchen,
Teubner, Leipzig, 1913.
- K. H. Rosen,
Elementary Number Theory and its Applications,
Addison Wesley Publishing Company, Reading, 1993.
MathSciNet
- M. Rosen,
Number Theory in Function Fields,
Springer-Verlag, New York, 2002.
MathSciNet
- R. Scheidler, A. Stein and H. C. Williams,
Key-exchange in real quadratic congruence function fields,
Des. Codes and Cryptogr. 7 (1996), 153-174.
MathSciNet
CrossRef
- R. Scheidler and A. Stein,
Class number approximation in cubic function fields,
Contrib. Discrete Math. 2 (2007), 107-132.
MathSciNet
- F. K. Schmidt,
Analytische Zahlentheorie in Körpern der Charakteristik p,
Math. Z. 33 (1931), 1-32.
MathSciNet
CrossRef
- D. Shanks,
Class number, a theory of factorization and genera,
in: Proc. Symp. Pure Math. 20, 1969, AMS,
Providence, 1971, 415-440.
MathSciNet
- D. Shanks,
The infrastructure of a real quadratic field and its applications,
in: Proceedings of the Number Theory Conference, Boulder, Colo., 1972, 217-224.
MathSciNet
- A. Stein,
Baby step-giant step-verfahren in reell-quadratischen
kongruenzfunktionenkörpern mit charakteristik ungleich 2,
Master's thesis, Universität des Saarlandes, Saarbrücken,
Germany, 1992.
- A. Stein,
Equivalences between elliptic curves and real quadratic congruence
function fields,
J. Théor. Nombres Bordeaux 9 (1997), 75-95.
MathSciNet
Cedram
- A. Stein,
Sharp upper bounds for arithmetics in hyperelliptic function fields,
J. Ramanujan Math. Soc. 16 (2001), 119-203.
MathSciNet
- A. Stein and E. Teske,
Explicit bounds and heuristics on class numbers in hyperelliptic
function fields,
Math. Comp. 71 (2002), 837-861.
MathSciNet
CrossRef
- A. Stein and H. C. Williams,
An improved method of computing the regulator of a real quadratic
function field,
in: Algorithmic Number Theory ANTS-III, Lecture Notes in Computer Science 1423,
Springer, Berlin, 1998, 607-620.
MathSciNet
- A. Stein and H. C. Williams,
Some methods for evaluating the regulator of a real quadratic
function field,
Experiment. Math. 8 (1999), 119-133.
MathSciNet
- A. Stein and H. G. Zimmer,
An algorithm for determining the regulator and the fundamental unit
of a hyperelliptic congruence function field,
in: Proc. 1991 Int. Symp. on Symbolic and Algebraic Computation,
ISAAC, Bonn, July 15-17, pages 183-184, ACM Press, 1991.
- A. Stein and E. Teske,
The parallelized Pollard kangaroo method in real quadratic function
fields,
Math. Comp. 71 (2002), 793-814.
MathSciNet
CrossRef
- A. J. Stephens and H. C. Williams,
Computation of real quadratic fields with class number one,
Math. Comp. 51 (1988), 809-824.
MathSciNet
CrossRef
- A. J. Stephens and H. C. Williams,
Some computational results on a problem concerning powerful numbers,
Math. Comp. 50 (1988), 619-632.
MathSciNet
CrossRef
- H. Stichtenoth,
Algebraic Function Fields and Codes,
Springer-Verlag, Berlin, 1993.
MathSciNet
- B. Weis and H. G. Zimmer,
Artin's Theorie der quadratischen Kongruenzfunktionenkörper und
ihre Anwendung auf die Berechnung der Einheiten- und Klassengruppen,
Mitt. Math. Ges. Hamburg XII (1991), 261-286.
MathSciNet
- E. Weiss,
Algebraic Number Theory,
McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963.
MathSciNet
- H. C. Williams and M. C. Wunderlich,
On the parallel generation of the residues for the continued fraction
algorithm,
Math. Comp. 48 (1987), 405-423.
MathSciNet
CrossRef
- R. J. Zuccherato,
The continued fraction algorithm and regulator for quadratic function
fields of characteristic 2,
J. Algebra 190 (1997), 563-587.
MathSciNet
CrossRef
- R. J. Zuccherato,
New applications of elliptic curves and function fields in
cryptography,
PhD thesis, Department of Combinatorics and
Optimization, University of Waterloo, 1997.
- R. J. Zuccherato,
The equivalence between elliptic curve and quadratic function field
discrete logarithms in characteristic 2,
in: Algorithmic Number Theory Symposium ANTS-III,
Lecture Notes in Computer Science 1423, Springer-Verlag,
1998, 621-638.
MathSciNet
Glasnik Matematicki Home Page