Glasnik Matematicki, Vol. 44, No.1 (2009), 11-81.

ON THE RESIDUAL SPECTRUM OF HERMITIAN QUATERNIONIC INNER FORM OF SO8

Neven Grbac

Department of Mathematics, University of Rijeka, Omladinska 14, 51000 Rijeka, Croatia
e-mail: neven.grbac@math.uniri.hr


Abstract.   In this paper we decompose the residual spectrum supported in the minimal parabolic subgroup of an inner form of the split group SO8. The approach is the Langlands spectral theory. However, since the group is non-quasi-split, it is out of the scope of the Langlands-Shahidi method and the new technique for the normalization of standard intertwining operators is developed. The decomposition shows interesting parts of the residual spectrum not appearing in the case of quasi-split groups.

2000 Mathematics Subject Classification.   11F70, 22E55.

Key words and phrases.   Automorphic forms, spectral decomposition, residual spectrum, inner forms.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.1.03


References:

  1. J. Arthur, Intertwining Operators and Residues I. Weighted Characters, J. Funct. Anal. 84 (1989), 19-84.
    MathSciNet     CrossRef

  2. J. Arthur, Unipotent automorphic representations: conjectures, in: Orbites unipotentes et représentations II, Astérisque 171-172 (1989), 13-71.
    MathSciNet

  3. J. Arthur, Unipotent automorphic representations: global motivation, in: L. Clozel, J. S. Milne, eds., Automorphic Forms, Shimura Varieties, and L--functions I., Academic Press, 1990, 1-75.
    MathSciNet

  4. J. Arthur, An Introduction to the trace formula, in: Harmonic analysis, the trace formula and Shimura varieties, 2005, 1-263.
    MathSciNet

  5. J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Princeton Univiversity Press, Princeton, 1989.
    MathSciNet

  6. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic Groups I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472.
    MathSciNet     Numdam

  7. W. Casselman and F. Shahidi, On irreducibility of standard modules for generic representations, Ann. Sci. École Norm. Sup. (4) 31 (1998), 561-589.
    MathSciNet     CrossRef

  8. P. Deligne, D. Kazhdan and M. F. Vignéras, Représentations des algèbres centrales simples p-adiques, Représentations des Groupes Réductifs sur un Corps Local, Herman, Paris, 1984, 33-117.
    MathSciNet

  9. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Sup. (4) 11 (1978), 471-542.
    MathSciNet     Numdam

  10. S. Gelbart and H. Jacquet, Forms of GL(2) from the analytic point of view, in: Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math. 33, part 1, 1979, 213-251.
    MathSciNet

  11. N. Grbac, Correspondence between the residual spectra of rank two split classical groups and their inner forms, in: Functional analysis IX (Dubrovnik, 2005), 44-57, Various Publ. Ser. 48, Univ. Aarhus, Aarhus, 2007.
    MathSciNet

  12. N. Grbac, On a relation between residual spectra of split classical groups and their inner forms, Canad. J. Math., to appear.

  13. N. Grbac, The residual spectrum of an inner form of Sp8 supported in the minimal parabolic subgroup, Trans. Amer. Math. Soc., to appear.

  14. N. Grbac, The residual spectrum of GLn over a division algebra, an appendix to: A. I. Badulescu, Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172 (2008), 383-438.
    MathSciNet

  15. N. Grbac, Arthur parameters for the residual spectrum of certain low rank Hermitian quaternionic classical groups, in preparation.

  16. M. Hanzer, R groups for quaternionic Hermitian groups, Glas. Mat. Ser. III 39(59) (2004), 31-48.
    MathSciNet     CrossRef

  17. M. Hanzer, The unitary dual of the Hermitian quaternionic group of split rank 2, Pacific J. Math. 226 (2006), 353-388.
    MathSciNet

  18. H. Jacquet, Principal L-functions of the linear group, Proc. Sympos. Pure Math. 33, part 2, 1979, 63-86.
    MathSciNet

  19. H. Jacquet, On the residual spectrum of GL(N), Lie Group Representations II, Lecture Notes in Math. 1041, Springer, Berlin, 1984, 185-208.
    MathSciNet

  20. H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464.
    MathSciNet     CrossRef

  21. C. D. Keys and F. Shahidi, Artin L-functions and normalization of intertwining operators, Ann. Sci. École Norm. Sup. (4) 21 (1988), 67-89.
    MathSciNet     Numdam

  22. H. H. Kim, The residual spectrum of Sp4, Compositio Math. 99 (1995), 129-151.
    MathSciNet     Numdam

  23. H. H. Kim, The residual spectrum of G2, Canad. J. Math. 48 (1996), 1245-1272.
    MathSciNet

  24. H. H. Kim, Langlands-Shahidi method and poles of automorphic L-functions: application to exterior square L-functions, Canad. J. Math. 51 (1999), 835-849.
    MathSciNet    

  25. H. H. Kim, Langlands-Shahidi method and poles of automorphic L-functions II, Israel J. Math. 117 (2000), 261-284.
    MathSciNet     CrossRef

  26. H. H. Kim, Residual spectrum of odd orthogonal groups, Internat. Math. Res. Notices 17 (2001), 873-906.
    MathSciNet     CrossRef

  27. T. Kon-No, The residual spectrum of U(2,2), Trans. Amer. Math. Soc. 350 (1998), 1285-1358.
    MathSciNet     CrossRef

  28. B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184.
    MathSciNet     CrossRef

  29. J.-P. Labesse, R. P. Langlands, L-indistinguishability for SL(2), Canad. J. Math. 31 (1979), 726-785.
    MathSciNet

  30. R. P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Math. 544, Springer-Verlag, 1976.
    MathSciNet

  31. R. P. Langlands, On the notion of an automorphic representation, A supplement to the paper: A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Sympos. Pure Math. 33, part 1 (1979), 203-207.
    MathSciNet

  32. E. Lapid, G. Muic and M. Tadic, On the generic unitary dual of quasisplit classical groups, Int. Math. Res. Not. 26 (2004), 1335-1354.
    MathSciNet     CrossRef

  33. C. Moeglin, Orbites unipotentes et spectre discret non ramifie, Compositio Math. 77 (1991), 1-54.
    MathSciNet     Numadam

  34. C. Moeglin, Représentations unipotentes et formes automorphes de carré intégrable, Forum Math. 6 (1994), 651-744.
    MathSciNet

  35. C. Moeglin, Conjectures sur le spectre residuel, J. Math. Soc. Japan 53 (2001), 395-427.
    MathSciNet     CrossRef

  36. C. Moeglin, Formes automorphes de carré intégrable non cuspidales, preprint.

  37. C. Moeglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4) 22 (1989), 605-674.
    MathSciNet     Numdam

  38. C. Moeglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series: Une paraphrase de l'Ecriture, Cambridge Tracts in Math. 113, Cambridge University Press, Cambridge, 1995.
    MathSciNet

  39. G. Muic, Some results on square integrable representations; irreducibility of standard representations, Internat. Math. Res. Notices 14 (1998), 705-726.
    MathSciNet     CrossRef

  40. G. Muic, A proof of Casselman-Shahidi's conjecture for quasi-split classical groups, Canad. Math. Bull. 44 (2001), 298-312.
    MathSciNet     CrossRef

  41. G. Muic, On certain classes of unitary representations for split classical groups, Canad. J. Math. 59 (2007), 148-185.
    MathSciNet    

  42. G. Muic and G. Savin, Complementary series for Hermitian quaternionic groups, Canad. Math. Bull. 43 (2000), 90-99.
    MathSciNet    

  43. F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1981), 297-355.
    MathSciNet     CrossRef

  44. F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), 973-1007.
    MathSciNet     CrossRef

  45. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series of p-adic groups, Ann. of Math. 132 (1990), 273-330.
    MathSciNet     CrossRef

  46. F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J. 66 (1992), 1-41.
    MathSciNet     CrossRef

  47. B. Speh, The unitary dual of Gl(3,R) and Gl(4,R), Math. Ann. 258 (1981/1982), 113-133.
    MathSciNet     CrossRef

  48. M. Tadic, Induced representations of GL(n,A) for p-adic division algebras A, J. Reine Angew. Math. 405 (1990), 48-77.
    MathSciNet

  49. M. Tadic, Notes on representations of non--archimedean SL(n), Pacific J. Math. 152 (1992), 375-396.
    MathSciNet    

  50. D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), 75-98.
    MathSciNet     CrossRef

  51. N. R. Wallach, Real reductive groups I, Pure and Applied Math. 132, Academic Press, Inc., Boston, 1988.
    MathSciNet

  52. G. Warner, Harmonic analysis on semi--simple Lie groups I, Die Grundlehren der mathematischen Wissenschaften 188, Springer-Verlag, New York-Heidelberg, 1972.
    MathSciNet

  53. A. V. Zelevinsky, Induced representations of reductive p-adic groups II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
    MathSciNet     Numdam

  54. Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators, Pacific J. Math. 180 (1997), 385-398.
    MathSciNet

  55. S. Zampera, The residual spectrum of the group of type G2, J. Math. Pures Appl. 76 (1997), 805-835.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page