Glasnik Matematicki, Vol. 44, No.1 (2009), 7-10.
ON THE DISTRIBUTION OF SOLUTIONS TO LINEAR EQUATIONS
Igor E. Shparlinski
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
e-mail: igor@ics.mq.edu.au
Abstract. Given two relatively prime positive integers m < n
we consider the smallest positive solution (x0, y0)
to the equation mx - ny = 1. E. I. Dinaburg and Y. G. Sinai
have used continued fractions
to show that the ratios x0/n are uniformly distributed
in [0,1],
when n and m run through consequtive integers
of intervals of comparable sizes.
We use a bound of exponential sums due to
W. Duke, J. B. Friedlander and H. Iwaniec to show a
similar result when m and n run through arbitrary
sets which are not too thin.
2000 Mathematics Subject Classification.
11D04, 11K38, 11L40.
Key words and phrases. Linear equations, uniform distribution, exponential sums.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.1.02
References:
- M. Drmota and R.F. Tichy,
Sequences, discrepancies and
applications, Springer-Verlag, Berlin, 1997.
MathSciNet
- E. I. Dinaburg and Y. G. Sinai,
The statistics of the solutions of the integer equation
ax - by = ± 1,
Funct. Anal. Appl. 24 (1990), 165-171.
MathSciNet
CrossRef
- D. Dolgopyat,
On the distribution of the minimal
solution of a linear Diophantine
equation with random coefficients,
Funct. Anal. Appl. 28 (1994), 168-177.
MathSciNet
CrossRef
- W. Duke, J. B. Friedlander and H. Iwaniec,
Bilinear forms with Kloosterman fractions,
Invent. Math. 128 (1997), 23-43.
MathSciNet
CrossRef
- A. Fujii,
On a problem of Dinaburg and Sinai,
Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 198-203.
MathSciNet
CrossRef
- H. Iwaniec and E. Kowalski,
Analytic number theory, American Mathematical Society,
Providence, 2004.
MathSciNet
- L. Kuipers and H. Niederreiter,
Uniform distribution of
sequences, Wiley-Interscience, New York-London-Sydney, 1974.
MathSciNet
- G. J. Rieger,
Über die Gleichung ad - bc = 1 und Gleichverteilung,
Math. Nachr. 162 (1993), 139-143.
MathSciNet
CrossRef
- M. S. Risager and Z. Rudnick,
On the statistics of the minimal solution of a linear
Diophantine equation and uniform distribution of the real
part of orbits in hyperbolic spaces,
Contemp. Math., Amer. Math. Soc., to appear.
Glasnik Matematicki Home Page