Glasnik Matematicki, Vol. 43, No.2 (2008), 439-449.
ON THE n-FOLD PSEUDO-HYPERSPACE SUSPENSIONS OF CONTINUA
Juan Carlos Macias
Facultad de Ciencias Fisico Matemáticas, BUAP, Ave. San
Claudio y Rio Verde, Ciudad Universitaria, San Manuel, Puebla Pue. C.P.
72570, México
e-mail: jcmacias@fcfm.buap.mx
Abstract. Let X be a (metric) continuum. Let n be a positive integer, let
Cn(X) denote the space of all nonempty closed subsets of X with at
most n components and let
F1(X) denote the space of singletons. The
n-fold pseudo-hyperspace suspension of X is the quotient space
Cn(X)/F1(X).
We present properties of this hyperspace.
2000 Mathematics Subject Classification.
54B20.
Key words and phrases. Absolute retract, aposyndesis, Cantor manifold,
continuum, hyperspace, indecomposable continuum, n-fold hyperspace,
n-fold hyperspace suspension, n-fold pseudo-hyperspace suspension,
unicoherent continuum.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.2.14
References:
- D. Curtis and N. T. Nhu,
Hyperspaces of finite subsets
which are homeomorphic to 0-dimensional
linear metric spaces,
Topology Appl. 19 (1985), 251-260.
MathSciNet
CrossRef
- J. Dugundji,
Topology, Allyn and Bacon, Inc., Boston, Mass, 1966.
MathSciNet
- R. Escobedo, M. de Jesus Lopez and S. Macias,
On the hyperspace suspension of a continuum,
Topology Appl. 138 (2004), 109-124.
MathSciNet
CrossRef
- A. Illanes,
The hyperspace C2(X)
for a finite graph X is unique,
Glas. Mat. Ser. III 37(57) (2002), 347-363.
MathSciNet
- A. Illanes and S. B. Nadler Jr.,
Hyperspaces. Fundamentals and Recent Advances,
Monographs and Textbooks in Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York, 1999.
MathSciNet
- J. L. Kelley,
Hyperspaces of a continuum,
Trans. Amer. Math. Soc. 52 (1942), 22-36.
MathSciNet
CrossRef
- W. Kuperberg,
Uniformly pathwise connected continua,
in: N.M. Stavrakas, K.R. Allen (Eds.), Studies in Topology, Proc. Conf. Univ.
North Carolin, Charlotte, NC, 1974, Academic Press, New York, 1975,
315-324.
MathSciNet
- K. Kuratowski,
Topology. Vol. II,
Academic Press, New York-London, 1968.
MathSciNet
- S. Macias,
Aposyndetic properties of symmetric products of continua,
Topology Proc. 22 (1997), 281-296.
MathSciNet
- S. Macias,
On the hyperspaces Cn(X) of a continuum X,
Topology Appl. 109 (2001), 237-256.
MathSciNet
CrossRef
- S. Macias,
On the hyperspaces Cn(X) of a continuum X, II,
Topology Proc. 25 (2000), 255-276.
MathSciNet
- S. Macias,
On the n-fold hyperspace suspension of continua,
Topology Appl. 138 (2004), 125-138.
MathSciNet
CrossRef
- S. Macias,
Topics on Continua,
Pure and Applied Mathematics Series, vol. 275, Chapman and Hall/CRC, Taylor and
Francis Group, Boca Raton, London, New York, Singapore, 2005.
MathSciNet
- S. Macias and S. B. Nadler Jr.,
n-fold hyperspaces, cones and products,
Topology Proc. 26 (2001/2002), 255-270.
MathSciNet
- S. Maci}as and S. B. Nadler Jr.,
Absolute n-fold hyperspace suspensions,
Colloquium Mathematicum 105 (2006), 221-231.
MathSciNet
- J. M. Martinez-Montejano,
Zero-dimensional closed set aposyndesis and hyperspaces,
Houston J. Math. 32 (2006), 1101-1105.
MathSciNet
- S. B. Nadler Jr.,
Hyperspaces of Sets,
Monographs Textbooks Pure Appl. Math. 49, Marcel Dekker, Inc., New York-Basel, 1978.
MathSciNet
- S. B. Nadler Jr.,
A fixed point theorem for hyperspace suspensions,
Houston J. Math. 5 (1979), 125-132.
MathSciNet
- S. B. Nadler Jr.,
Continuum theory. An introduction,
Monographs Textbooks Pure Applied Mathematics 158, Marcel Dekker, Inc., New York, 1992.
MathSciNet
- M. Wojdislawski,
Rétractes absolus et hyperespaces des continus,
Fund. Math. 32 (1939), 184-192.
Glasnik Matematicki Home Page