Glasnik Matematicki, Vol. 43, No.2 (2008), 439-449.

ON THE n-FOLD PSEUDO-HYPERSPACE SUSPENSIONS OF CONTINUA

Juan Carlos Macias

Facultad de Ciencias Fisico Matemáticas, BUAP, Ave. San Claudio y Rio Verde, Ciudad Universitaria, San Manuel, Puebla Pue. C.P. 72570, México
e-mail: jcmacias@fcfm.buap.mx


Abstract.   Let X be a (metric) continuum. Let n be a positive integer, let Cn(X) denote the space of all nonempty closed subsets of X with at most n components and let F1(X) denote the space of singletons. The n-fold pseudo-hyperspace suspension of X is the quotient space Cn(X)/F1(X). We present properties of this hyperspace.

2000 Mathematics Subject Classification.   54B20.

Key words and phrases.   Absolute retract, aposyndesis, Cantor manifold, continuum, hyperspace, indecomposable continuum, n-fold hyperspace, n-fold hyperspace suspension, n-fold pseudo-hyperspace suspension, unicoherent continuum.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.2.14


References:

  1. D. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to g0-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260.
    MathSciNet     CrossRef

  2. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass, 1966.
    MathSciNet

  3. R. Escobedo, M. de Jesus Lopez and S. Macias, On the hyperspace suspension of a continuum, Topology Appl. 138 (2004), 109-124.
    MathSciNet     CrossRef

  4. A. Illanes, The hyperspace C2(X) for a finite graph X is unique, Glas. Mat. Ser. III 37(57) (2002), 347-363.
    MathSciNet

  5. A. Illanes and S. B. Nadler Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York, 1999.
    MathSciNet

  6. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
    MathSciNet     CrossRef

  7. W. Kuperberg, Uniformly pathwise connected continua, in: N.M. Stavrakas, K.R. Allen (Eds.), Studies in Topology, Proc. Conf. Univ. North Carolin, Charlotte, NC, 1974, Academic Press, New York, 1975, 315-324.
    MathSciNet

  8. K. Kuratowski, Topology. Vol. II, Academic Press, New York-London, 1968.
    MathSciNet

  9. S. Macias, Aposyndetic properties of symmetric products of continua, Topology Proc. 22 (1997), 281-296.
    MathSciNet

  10. S. Macias, On the hyperspaces Cn(X) of a continuum X, Topology Appl. 109 (2001), 237-256.
    MathSciNet     CrossRef

  11. S. Macias, On the hyperspaces Cn(X) of a continuum X, II, Topology Proc. 25 (2000), 255-276.
    MathSciNet

  12. S. Macias, On the n-fold hyperspace suspension of continua, Topology Appl. 138 (2004), 125-138.
    MathSciNet     CrossRef

  13. S. Macias, Topics on Continua, Pure and Applied Mathematics Series, vol. 275, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, London, New York, Singapore, 2005.
    MathSciNet

  14. S. Macias and S. B. Nadler Jr., n-fold hyperspaces, cones and products, Topology Proc. 26 (2001/2002), 255-270.
    MathSciNet

  15. S. Maci}as and S. B. Nadler Jr., Absolute n-fold hyperspace suspensions, Colloquium Mathematicum 105 (2006), 221-231.
    MathSciNet

  16. J. M. Martinez-Montejano, Zero-dimensional closed set aposyndesis and hyperspaces, Houston J. Math. 32 (2006), 1101-1105.
    MathSciNet

  17. S. B. Nadler Jr., Hyperspaces of Sets, Monographs Textbooks Pure Appl. Math. 49, Marcel Dekker, Inc., New York-Basel, 1978.
    MathSciNet

  18. S. B. Nadler Jr., A fixed point theorem for hyperspace suspensions, Houston J. Math. 5 (1979), 125-132.
    MathSciNet

  19. S. B. Nadler Jr., Continuum theory. An introduction, Monographs Textbooks Pure Applied Mathematics 158, Marcel Dekker, Inc., New York, 1992.
    MathSciNet

  20. M. Wojdislawski, Rétractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192.

Glasnik Matematicki Home Page