Glasnik Matematicki, Vol. 43, No.2 (2008), 397-422.
ON HEREDITARY REFLEXIVITY OF TOPOLOGICAL VECTOR SPACES. THE DE RHAM COCHAIN AND CHAIN SPACES
Ju. T. Lisica
Mathematical Analysis and Function Theory Department,
Peoples' Friendship University of Russia, Miklukho-Maklay str. 6,
117198 Moscow, Russia
e-mail: lisica@online.ru
Abstract. For proving reflexivity of the spaces of de Rham cohomology and homology of
C∞-manifolds the author considers the notion of hereditary
reflexivity as well as the notion of dual hereditary reflexivity of locally convex
topological vector spaces which is interesting in itself.
Complete barrelled nuclear
spaces with complete nuclear duals turn out to be hereditarily reflexive.
The Pontryagin duality in locally convex topological spaces is also considered.
2000 Mathematics Subject Classification.
46A03, 46A04, 55N07, 55P55.
Key words and phrases. De Rham cohomology,
currents, nuclear spaces, hereditary reflexivity, dual hereditary reflexivity, Pontryagin duality.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.2.12
References:
- N. Bourbaki,
Espaces Vectoriels Topologiques, Hermann & Cie, Éditeur, Paris, 1953, 1955.
MathSciNet
- J. Dieudonné,
La dualité dans les espaces vectoriels
topologiques, Ann., Sci. École Norm. Sup. (3) 59 (1942), 107-139.
MathSciNet
Numdam
- A. Grothendieck,
Sur la complétion du dual d'un
espace vectoriel localement convexe, C. R. Acad. Sci. Paris 230
(1950), 605-606.
MathSciNet
- A. Grothendieck,
Sur une notion de produit tensoriel topologique
d'espaces vectoriels topologiques, et une classe remarquable d'espaces
vectoriels liée à cette notion, C. R. Acad. Sci. Paris 233
(1951), 1556-1558.
MathSciNet
- A. Grothendieck,
Sur les espaces (F) et (DF),
Summa Brasil. Math. 3 (1954), 57-123.
MathSciNet
- S. Kaplan,
Extensions of Pontryagin duality, I. Infinite products,
Duke Math. J. 15 (1948), 649-658; II. Direct and inverse sequences, ibid. 17 (1950), 419-435.
MathSciNet
MathSciNet
- Y. Komura,
Some examples on linear topological spaces, Math. Ann.
153 (1964), 150-162.
MathSciNet
CrossRef
- Ju. T. Lisica,
Main theorems of strong shape theory of
compact Hausdorff spaces, Vestnik Ross. Univ. Druzhby Narodov 7 (2000),
63-93 (in Russian).
- Ju. T. Lisica,
Coherent homotopy, homology, cohomology and
strong shape theory, Dissertation, Moscow, 2001 (in Russian).
- Ju. T. Lisica,
Theory of spectral sequences. II,
Fundam. Prikl. Mat 11 (2005) 117-149.
MathSciNet
CrossRef
- V. V. Marchenko, Commutative cochains of germs of
differentiable forms of compacta in Euclidean spaces, B. Sc. thesis,
Ross. Univ. Druzhby Narodov, 2000 (in Russian).
- S. Mardesic, Strong Shape and Homology, Springer-Verlag, Berlin,
2000.
MathSciNet
- S. A. Morris,
Pontryagin duality and the structure of locally
compact abelian groups, London Mathematical Society Lecture Note Series 29,
Cambridge University Press, Cambridge-New York-Melbourne, 1977.
MathSciNet
- A. Pietsch,
Nukleare lokalkonvexe Räume, Akademie-Verlag, Berlin,
1965.
MathSciNet
- L. S. Pontryagin,
Continuous groups, Nauka, Moscow, 1973.
MathSciNet
- D. A. Raykov,
Some linear-topological properties of
the spaces D
and D' (in Russian),
Appendix 2 in the book
A.P. Robertson and W.R. Robertson, Topological Vector Spaces, Mir, Moscow, 1967, 238-250.
- G. de Rham,
Variétées Différentiables. Formes, courants,
formes harmoniques, Hermann & Cie, Éditeur, Paris, 1955.
MathSciNet
- A. P. Robertson and W. R. Robertson,
Topological Vector Spaces, Cambridge Tracts in Mathematics and Mathematical Physics 53},
Cambridge University Press, New York, 1964.
MathSciNet
- H. H. Schaefer,
Topological Vector Spaces, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966.
MathSciNet
- W. Slowikowski,
Fonctionelles linéaires dans des réunions
dénombrables d'espaces de Banach réflexifs,
C. R. Acad. Sc. Paris Sér A-B \textbf{262} (1966),
A870-A872.
MathSciNet
- M. F. Smith,
The Pontrjagin duality theorem in linear spaces,
Ann. of Math. (2) 56 (1952), 248-253.
MathSciNet
CrossRef
Glasnik Matematicki Home Page