Glasnik Matematicki, Vol. 43, No.2 (2008), 387-395.
A NOTE ON BLOCK SEQUENCES IN HILBERT SPACES
S. K. Kaushik, Ghanshyam Singh and Virender
Department of Mathematics, Kirori Mal College,
University of Delhi, Delhi 110 007, India
e-mail: shikk2003@yahoo.co.in
Department of Mathematics and Statistics,
University College of Science, M.L.S. University, Udaipur (Rajasthan), India
e-mail: Ghanshyamsrathore@yahoo.co.in
Department of Mathematics and Statistics,
University College of Science, M.L.S. University, Udaipur (Rajasthan), India
e-mail: virender57@yahoo.com
Abstract. Block sequences with respect to frames in Hilbert spaces have been defined.
Examples have been provided to show that a block
sequence with respect to a given frame may not even be a Bessel sequence. Also, a necessary and
sufficient condition under which a block sequence with
respect to a frame is a frame has been given. Further, applications of block sequences to obtain Fusion frames and
Fusion frame systems have been given.
Finally, a problem has been posed and observed that an affirmative answer to this problem gives
an affirmative answer to the Feichtinger Conjecture.
2000 Mathematics Subject Classification.
42C15, 42A38.
Key words and phrases. Frame, Bessel sequence, block sequence.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.2.11
References:
- R. Balan, P. G. Casazza and D. Edidin,
On signal reconstruction without phase,
Appl. Comput. Harmon. Anal. 20 (2006), 345-356.
MathSciNet
CrossRef
- J. J. Benedetto and M. Fickus,
Finite normalized tight frames,
Frames, Adv. Comput. Math. 18 (2003), 357-385.
MathSciNet
CrossRef
- P. G. Casazza,
The art of frame theory,
Taiwanese J. Math. 4 (2000), 129-201.
MathSciNet
- P. G. Casazza,
Custom building finite frames, in: Wavelets, frames and operator theory, 61-86,
Contemp. Math. 345, Amer. Math. Soc., Providence, RI, 2004.
MathSciNet
- P. G. Casazza, O. Chirstensen, A. Linder and R. Vershynin,
Frames and Feichtinger Conjecture, Proc. Amer. Math. Soc. 133 (2005), 1025-1033.
MathSciNet
CrossRef
- P. G. Casazza and G. Kutyniok,
Robustness of fusion frames under erasures of subspaces and of local frame vectors,
Random transforms, geometry, and wavelets (New Orleans, LA, 2006),
Contemp. Math., Amer. Math. Soc., Providence, RI (to appear).
- P. G. Casazza, G. Kutyniok, D. Speegle and J. C. Tremain,
A decomposition theorem for frames and the Feichtinger conjucture,
Proc. Amer. Math. Soc. 136 (2008), 2043-2053.
MathSciNet
CrossRef
- P. G. Casazza, G. Kutyniok and S. Li,
Fusion frames and distributed processing,
Appl. Comput. Harmon. Anal. 25 (2008), 114-132.
CrossRef
- P. G. Casazza, G. Kutyniok, S. Li and C. J. Rozell,
Modeling sensor networks with fusion frames.
Wavelets XII (San Diego, CA, 2007), 67011M-1 - 67011M-11, SPIE Proc. 6701, SPIE, Bellingham, WA, 2007.
- O. Christensen,
An Introduction to Frames and Riesz Bases, Birkhäuser Boston, Inc., Boston, MA, 2003.
MathSciNet
- O. Christensen,
Linear combinations of frames and frame packets,
Z. Anal. Anwendungen 20 (2001), 805-815.
MathSciNet
- I. Daubechies, A. Grossmann and Y. Meyer,
Painless non-orthogonal expansions,
J. Math. Phys. 27 (1986), 1271-1283.
MathSciNet
CrossRef
- R. J. Duffin and A. C. Schaeffer,
A class of nonharmonic Fourier series,
Trans. Amer. Math. Soc. 72 (1952), 341-366.
MathSciNet
CrossRef
- S. J. Favier and R. A. Zalik,
On the stability of frames and Riesz bases,
Appl. Comput. Harmon. Anal. 2 (1995), 160-173.
MathSciNet
CrossRef
- D. Gabor,
Theory of communications,
J. IEE (London) 93 (1946), 429-457.
- C. Heil and D. Walnut,
Continuous and discrete wavelet transform,
SIAM Rev. 31 (1989), 628-666.
MathSciNet
CrossRef
- R. V. Kadison and I. M. Singer,
Extensions of pure states,
Amer. J. Math. 81 (1959), 383-400.
MathSciNet
CrossRef
- G. Kutyniok, A. Pezeshki, A. R. Calderbank and T. Liu,
Robust dimension reduction, fusion frames, and Grassmannian packings, preprint.
Glasnik Matematicki Home Page