Glasnik Matematicki, Vol. 43, No.2 (2008), 375-386.
ENERGY DECAY ESTIMATES FOR A WAVE EQUATION WITH NONLINEAR BOUNDARY FEEDBACK
Mohammad Cherkaoui and Naji Yebari
Université Moulay Ismail, Département de Mathematiques, Faculté des Sciences et Techniques,
B. P. 509, Errachidia, Maroc
e-mail: mad_cherkaoui@yahoo.fr
Université Abdelmalek Essaadi, Département de Mathematiques, Faculté des Sciences,
B. P. 2121, Tetouan, Maroc
e-mail: nyebari@hotmail.com
Abstract. We study a wave equation in one
dimensional space with nonlinear dissipative boundary feedback at
both ends. We prove existence and uniqueness of solution, strong
and uniform exponential decay of energy under some conditions in
the nonlinear feedback. Decay rate estimates of the energy are
given under weak growth assumptions on the feedback functions.
2000 Mathematics Subject Classification.
35L05, 35L20, 93D15, 34D20.
Key words and phrases. Wave equation, nonlinear
boundary value problems, stabilization of systems by feedback,
Lyapunov stability, polynomial decay.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.2.10
References:
- B. Chentouf, C. Z. Xu and G. Sallet,
On the stabilization of a vibrating equation, Nonlinear Anal. 39
(2000), 537-558.
MathSciNet
CrossRef
- G. Chen and H. K. Wang,
Asymptotic behavior of solutions of the one-dimensional wave equation with a
nonlinear boundary stabilizer, SIAM J.
Control Optim. 27 (1989), 758-775.
MathSciNet
CrossRef
- M. Cherkaoui,
Sur quelques problèemes de stabilisation de l'équation des
ondes avec controle frontière, Thèse d'État,
Université Abdelmalek ESSAADI, Faculté des Sciences, Tetouan,
Morocco, 2002.
- F. Conrad and B. Rao,
Decay of solutions of the wave equation in a star-shaped domain with
nonlinear boundary feedback, Asymptotic Anal. 7 (1993),
159-177.
MathSciNet
- C. M. Dafermos and M. Slemrod,
Asymptotic behaviour of
nonlinear contraction semigroups, J. Functional Analysis 13 (1973),
97-106.
MathSciNet
CrossRef
- A. Haraux,
Semi-linear hyperbolic problems in bounded
domains, Math. Rep. 3 (1987), i-xxiv and 1-281.
MathSciNet
- A. LaSalle and S. Lefschetz,
Stability by Lyapounov's direct method, with applications, Academic Press, New York-London, 1961.
MathSciNet
- I. Lasiecka,
Stabilization of wave equations
with nonlinear dissipative damping on the boundary,
in: Proc. 26th IEEE Conf. on decision and Control, Los Angeles, CA,
1987, 2348-2349.
- I. Lasiecka,
Stabilization of a wave and
plate - like equations with nonlinear dissipative damping on the
boundary, Applied Mathematics Report RM-88-05, University of
Virginia, Charlottesville, VA, March 1988.
- M. Slemrod,
Feedback stabilization of a linear control system in
Hilbert space with an priori bounded control, Math. Control
Signals Systems 2 (1989), 265-285.
MathSciNet
CrossRef
- E. Zuazua,
Some remarks on the boundary stabilizability of the wave
equation, in: Control of Boundaries and Stabilization, ed. J. Simon,
Lecture Notes in Control and Inform. Sci. 125,
Springer-Verlag, Berlin, 1989.
MathSciNet
Glasnik Matematicki Home Page