Glasnik Matematicki, Vol. 43, No.2 (2008), 309-320.
THE ZERO-DIVISOR GRAPH WITH RESPECT TO IDEALS OF A COMMUTATIVE SEMIRING
Shahabaddin Ebrahimi Atani
Department of Mathematics, University of Guilan, P.O. Box 1914,
Rasht, Iran
Abstract. In a manner analogous to a commutative ring, the
ideal-based zero-divisor graph of a commutative semiring R can be defined
as the undirected graph
ΓI(R) for some ideal I of R.
The properties and possible structures of the graph
ΓI(R) are studied.
2000 Mathematics Subject Classification.
16Y60, 05C75.
Key words and phrases. Semiring, k-ideal, zero-divisor, graph, ideal-based.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.2.06
References:
- D. F. Anderson and P. S. Livingston,
The zero-divisor graph of a commutative rings, J. Algebra 217 (1999), 434-447.
MathSciNet
CrossRef
- D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston,
The zero-divisor graph of a commutative ring, II, Lecture Notes in Pure and
Appl. Math. 220, Dekker, New York, 2001.
MathSciNet
- P. Allen,
Ideal theory in semirings, Dissertation, Texas Christian University, 1967.
- P. J. Allen, J. Neggers and H. S. Kim,
Ideal theory in commutative A-semirings, Kyungpook Math. J 46 (2006), 261-271.
MathSciNet
- I. Beck,
Coloring of a commutative ring, J. Algebra 116 (1988), 208-226.
MathSciNet
CrossRef
- S. Ebrahimi Atani,
On k-weakly primary ideals over semirings,
Sarajevo J. Math. 3(15) (2007), 9-13.
MathSciNet
- S. Ebrahimi Atani,
The ideal theory in quotients
of commutative semirings,
Glas. Math. Ser. III 42(62) (2007), 301-308.
MathSciNet
CrossRef
- S. Ebrahimi Atani and R. Ebrahimi Atani,
Ideal theory in commutative semirings,
Bul. Acad. Stiinte Repub. Mold. Mat. 2(57) (2008), 14-23.
- V. Gupta and J. N. Chaudhari,
Some remarks on semirings,
Rad. Mat. 12 (2003), 13-18.
MathSciNet
- V. Gupta and J. N. Chaudhari,
Right π-regular semirings, Sarajevo J. Math. 2 (2006), 3-9.
MathSciNet
- H. R. Maimani, M. R. Pournaki and S. Yassemi,
Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (2006), 923-929.
MathSciNet
CrossRef
- J. R. Mosher,
Generalized quotients of hemirings,
Compositio Math. 22 (1970), 275-281.
MathSciNet
- S. P. Redmond,
An ideal-based zero-divisor graph of a commutative ring,
Comm. Algebra 31 (2003), 4425-4443.
MathSciNet
CrossRef
- M. K. Sen and M. R. Adhikari,
On maximal k-ideals of semirings,
Proc. Amer. Math. Soc. 118 (1993), 699-703.
MathSciNet
CrossRef
Glasnik Matematicki Home Page