Glasnik Matematicki, Vol. 43, No.2 (2008), 293-307.
THE ADDITIVE UNIT STRUCTURE OF COMPLEX BIQUADRATIC FIELDS
Volker Ziegler
Graz University of Technology, Institute for analysis and computational number theory,
Steyrergasse 30, A-8010 Graz, Austria
e-mail: ziegler@finanz.math.tugraz.at
Abstract. We determine which rings of the form Z[α] are generated by their units,
where α is a root
of the polynomial X4 - BX2 + D such that
α and all its conjugates are complex.
2000 Mathematics Subject Classification.
11R16, 11R27, 11A67.
Key words and phrases. Biquadratic fields, unit sum number.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.2.05
References:
- N. Ashrafi and P. Vámos,
On the unit sum number of some rings,
Q. J. Math. 56 (2005), 1-12.
MathSciNet
CrossRef
- P. Belcher,
Integers expressible as sums of distinct units,
Bull. Lond. Math. Soc. 6 (1974), 66-68.
MathSciNet
CrossRef
- P. Belcher,
A test for integers being sums of distinct units applied to cubic fields,
J. Lond. Math. Soc. (2) 12 (1976), 141-148.
MathSciNet
CrossRef
- A. Filipin, R. Tichy, and V. Ziegler,
The additive unit structure of purely quartic complex fields,
Funct. Approx. Comment. Math., to appear.
- B. Goldsmith, S. Pabst, and A. Scott,
Unit sum numbers of rings and modules,
Q. J. Math. Oxford Ser. (2) 49 (1998), 331-344.
MathSciNet
CrossRef
- B. Jacobson,
Sums of distinct divisors and sums of distinct units,
Proc. Am. Math. Soc. 15 (1964), 179-183.
MathSciNet
CrossRef
- M. Jarden and W. Narkiewicz,
On sums of units,
Monatsh. Math. 150 (2007), 327-332.
MathSciNet
CrossRef
- J. Sliwa,
Sums of distinct units,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 11-13.
MathSciNet
- R. Tichy and V. Ziegler,
Units generating the ring of integers of complex cubic fields,
Colloq. Math. 109 (2007), 71-83.
MathSciNet
- P. Vámos,
2-good rings,
Q. J. Math. 56 (2005), 417-430.
MathSciNet
CrossRef
- L. C. Washington,
Introduction to cyclotomic fields, Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997.
MathSciNet
- D. Zelinsky,
Every linear transformation is a sum of nonsingular ones,
Proc. Am. Math. Soc. 5 (1954), 627-630.
MathSciNet
CrossRef
Glasnik Matematicki Home Page