Glasnik Matematicki, Vol. 43, No.2 (2008), 265-291.

ON THE EXTENSIBILITY OF DIOPHANTINE TRIPLES {k-1, k+1, 4k} FOR GAUSSIAN INTEGERS

Zrinka Franušić

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: fran@math.hr


Abstract.   In this paper, we prove that if {k-1, k+1, 4k, d}, where k in Z[i] \ {0, ± 1}, d in Z[i], is a Diophantine quadruple in Z[i], i.e. if (k-1)d+1, (k+1)d+1, 4kd+1 are perfect squares in Z[i], then d = 16k3-4k.

2000 Mathematics Subject Classification.   11D09, 11R11.

Key words and phrases.   Diophantine quadruples, simultaneous Diophantine equations, linear recurrence sequences.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.2.04


References:

  1. J. Arkin, V. E. Hoggatt and E. G. Strauss, On Euler's solution of a problem of Diophantus, Fibonacci Quart. 17 (1979), 333-339.
    MathSciNet

  2. A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
    MathSciNet     CrossRef

  3. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
    MathSciNet

  4. M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173-199.
    MathSciNet     CrossRef

  5. Y. Bugeaud, A. Dujella and M. Mignotte, On the family of Diophantine triples {k-1, k+1, 16k3-4k}, Glasgow Math. J. 49 (2007), 333-344.
    MathSciNet     CrossRef

  6. A. Dujella, The problem of extension of parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.
    MathSciNet

  7. A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
    MathSciNet     CrossRef

  8. A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number Theory 89 (2001), 126-150.
    MathSciNet     CrossRef

  9. A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  10. A. Dujella and A. Pethö, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
    MathSciNet     CrossRef

  11. L. Fjellstedt, On a class of Diophantine equations of the second degree in imaginary quadratic fields, Ark. Mat. 2 (1953), 435-461.
    MathSciNet     CrossRef

  12. Y. Fujita, The extensibility of Diophantine pairs {k-1, k+1}, J. Number Theory 128 (2008), 322-353.
    MathSciNet     CrossRef

  13. P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41(61) (2006), 195-203.
    MathSciNet     CrossRef

  14. B. Jadrijevic and V. Ziegler, A system of relative Pellian equations and related family of relative Thue equations, Int. J. Number Theory 2 (2006), 569-590.
    MathSciNet     CrossRef

  15. I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Wiley, New York, 1991.
    MathSciNet

  16. W. Sierpinski, Elementary Theory of Numbers, PWN, Warszawa; North Holland, Amsterdam, 1988.
    MathSciNet


Glasnik Matematicki Home Page