Glasnik Matematicki, Vol. 43, No.2 (2008), 253-264.
FIBONACCI DIOPHANTINE TRIPLES
Florian Luca and László Szalay
Instituto de Matemáticas, Universidad Nacional Autonoma de México,
C.P. 58180, Morelia, Michoacán, México
e-mail: fluca@matmor.unam.mx
Institute of Mathematics and Statistics, University of West Hungary,
9400, Sopron, Erzsébet utca 9, Hungary
e-mail: laszalay@ktk.nyme.hu
Abstract. In this paper, we show that there are no three distinct positive
integers a, b, c such that ab+1, ac+1, bc+1 are all three
Fibonacci numbers.
2000 Mathematics Subject Classification.
11B37, 11B39, 11D61.
Key words and phrases. Binary recurrences, Fibonacci and Lucas numbers, Diophantine triples.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.2.03
References:
- Y. Bugeaud and A. Dujella,
On a problem of Diophantus for higher powers,
Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10.
MathSciNet
CrossRef
- Y. Bugeaud and K. Gyarmati,
On generalizations of a problem of Diophantus, Illinois J. Math. 48 (2004), 1105-1115.
MathSciNet
- R. D. Carmichael,
On the numerical factors of the arithmetic forms αn ± βn,
Ann. Math. (2) 15 (1913/1914), 30-48.
MathSciNet
CrossRef
- J. H. E. Cohn,
On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540.
MathSciNet
CrossRef
- A. Dujella,
There are only finitely many Diophantine
quintuples, J. reine angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- R. Finkelstein,
On Fibonacci numbers which are one more than a square,
J. reine angew. Math. 262/263 (1973), 171-178.
MathSciNet
- C. Fuchs, F. Luca and L. Szalay,
Diophantine triples with values in binary recurrences,
Ann. Sc. Norm. Super Pisa Cl. Sci. (5), to appear.
- P. Gibbs,
Some rational Diophantine sextuples,
Glas. Mat. Ser. III 41(61) (2006), 195-203.
MathSciNet
CrossRef
- K. Gyarmati, A. Sarkozy and C. L. Stewart,
On shifted products which are powers,
Mathematika 49 (2002), 227-230.
MathSciNet
- K. Gyarmati and C. L. Stewart,
On powers in shifted products,
Glas. Mat. Ser. III 42(62) (2007), 273-279.
MathSciNet
CrossRef
- R. Knott,
Fibonacci Numbers and the Golden Section,
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/.
- T. Koshy,
Fibonacci and Lucas numbers with applications, Wiley-Interscience, New York, 2001.
MathSciNet
- F. Luca,
On shifted products which are powers,
Glas. Mat. Ser. III 40(60) (2005), 13-20.
MathSciNet
CrossRef
- F. Luca and L. Szalay,
Fibonacci numbers of the form
pa ± pb + 1,
Fibonacci Quart. 45 (2007), 98-103.
MathSciNet
Glasnik Matematicki Home Page