Glasnik Matematicki, Vol. 43, No.1 (2008), 179-194.
VORONOVSKAJA-TYPE THEOREM FOR CERTAIN GBS OPERATORS
Ovidiu T. Pop
National College "Mihai Eminescu", 5 Mihai Eminescu Street,
Satu Mare 440014, Romania
e-mail: ovidiutiberiu@yahoo.com
Abstract. In this paper we will demonstrate a Voronovskaja-type theorem and
approximation theorem for GBS operator associated to a linear
positive operator.
2000 Mathematics Subject Classification.
41A10, 41A25, 41A35, 41A36.
Key words and phrases. Linear positive operators, GBS operators, the first
order modulus of smoothness, Voronovskaja-type theorem,
approximation theorem.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.1.12
References:
- O. Agratini,
Aproximare prin operatori
liniari, Presa Universitara Clujeana,
Cluj-Napoca, 2000 (in Romanian).
- I. Badea and D. Andrica,
Voronovskaja-type
theorems for certain non-positive linear operator, Rev. Anal.
Num. Théor. Approx. 15 (1986), 95-103.
MathSciNet
- C. Badea and C. Cottin,
Korovkin-type Theorems
for Generalized Boolean Sum Operators, Colloquia Mathematica
Societatis János Bolyai, 58, Approximation Theory,
Kecskemét (Hungary) (1990), 51-67.
MathSciNet
- V. A. Baskakov, An example of a sequence of
linear positive operators in the space of continuous functions,
Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251.
MathSciNet
- M. Becker and R. J. Nessel, A global
approximation theorem for Meyer-König and Zeller operators,
Math. Zeitschr. 160 (1978), 195-206.
MathSciNet
CrossRef
- G. Bleimann, P. L. Butzer and L. A. Hahn,
Bernstein-type operator approximating continuous functions
on the semi-axis, Indag. Math. 42 (1980), 255-262.
MathSciNet
- S. N. Bernstein,
Démonstration du
théorème de Weierstrass fondée sur le calcul de
probabilités, Commun. Soc. Math. Kharkow (2),
13 (1912-1913), 1-2.
- E. W. Cheney and A. Sharma,
Bernstein power
series, Canadian J. Math. 16 (1964), 241-252.
MathSciNet
- M. M. Derriennic,
Sur l'approximation de fonctions intégrables sur [0,1] par les polynomes de
Bernstein modifiés, J. Approx. Theory 31 (1981),
325-343.
MathSciNet
CrossRef
- Z. Ditzian and V. Totik,
Moduli of Smoothness,
Springer Verlag, Berlin, 1987.
MathSciNet
- J. L. Durrmeyer,
Une formule d'inversion de
la transformée de Laplace: Applications à la théorie
des moments, Thèse de 3e cycle, Faculté des Sciences de
l'Université de Paris, 1967.
- J. Favard,
Sur les multiplicateurs
d'interpolation, J. Math. Pures Appl. 23
(1944), 219-247.
MathSciNet
- M. Ismail and C. P. May,
On a family of
approximation operators, J. Math. Anal. Appl. 63
(1978), 446-462.
MathSciNet
CrossRef
- L. V. Kantorovich,
Sur certain développements suivant les polynomes de la forme de S.
Bernstein, I, II, C. R. Acad. URSS (1930), 563-568, 595-600.
- W. Meyer-König and K. Zeller,
Bernsteinsche Potenzreihen, Studia Math. 19 (1960), 89-94.
MathSciNet
- G. M. Mirakjan,
Approximation of continuous
functions with the aid of polynomials, Dokl. Acad. Nauk SSSR
31 (1941), 201-205 (in Russian).
- M. W. Müller,
Die Folge der
Gammaoperatoren, Dissertation, Stuttgart, 1967.
- O. T. Pop,
New properties of the
Bernstein-Stancu operators, Anal. Univ. Oradea, Fasc. Matematica
Tom XI (2004), 51-60.
MathSciNet
- O. T. Pop,
The generalization of Voronovskaja's theorem for a class of linear and positive
operators, Rev. Anal. Num. Théor. Approx. 34 (2005), 79-91.
MathSciNet
- O. T. Pop,
About a class of linear and
positive operators, Carpathian J. Math. 21 (2005), 99-108.
MathSciNet
- O. T. Pop,
About some linear and positive
operators defined by infinite sum, Dem. Math. 39 (2006), 377-388.
MathSciNet
- O. T. Pop,
On operators of Bleimann, Butzer
and Hahn, Anal. Univ. Timisoara 43 (2005), 117-127.
MathSciNet
- O. T. Pop,
The generalization of
Voronovskaja's theorem for a class of bivariate operators, to
appear in Stud. Univ. Babes-Bolyai Math.
- O. T. Pop,
The generalization of
Voronovskaja's theorem for exponential operators,
Creative Math. & Inf. 16 (2007), 54-62.
MathSciNet
- O. T. Pop,
About a general property for a
class of linear positive operators and applications, Rev. Anal.
Num. Théor. Approx. 34 (2005), 175-180.
MathSciNet
- F. Schurer,
Linear positive operators in
approximation theory, Math. Inst. Tech. Univ. Delft. Report, 1962.
- D. D. Stancu,
Asupra unei generalizari a
polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai, Ser.
Math.-Phys. 14 (1969), 31-45 (in Romanian).
- D. D. Stancu, Gh. Coman, O. Agratini and R. Trimbitas,
Analiza numerica si teoria aproximarii, I, Presa Universitara Clujeana, Cluj-Napoca, 2001
(in Romanian).
- O. Szász,
Generalization of. S. N.
Bernstein's polynomials to the infinite interval, J. Research,
National Bureau of Standards 45 (1950), 239-245.
MathSciNet
- A. F. Timan,
Theory of Approximation of
Functions of a Real Variable, New York, Macmillan Co. 1963.
MathSciNet
- E. Voronovskaja,
Détermination de la
forme asymptotique d'approximation des fonctions par les
polynomes de M. Bernstein, C. R. Acad. Sci. URSS (1932),
79-85.
Glasnik Matematicki Home Page