Glasnik Matematicki, Vol. 43, No.1 (2008), 179-194.

VORONOVSKAJA-TYPE THEOREM FOR CERTAIN GBS OPERATORS

Ovidiu T. Pop

National College "Mihai Eminescu", 5 Mihai Eminescu Street, Satu Mare 440014, Romania
e-mail: ovidiutiberiu@yahoo.com


Abstract.   In this paper we will demonstrate a Voronovskaja-type theorem and approximation theorem for GBS operator associated to a linear positive operator.

2000 Mathematics Subject Classification.   41A10, 41A25, 41A35, 41A36.

Key words and phrases.   Linear positive operators, GBS operators, the first order modulus of smoothness, Voronovskaja-type theorem, approximation theorem.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.1.12


References:

  1. O. Agratini, Aproximare prin operatori liniari, Presa Universitara Clujeana, Cluj-Napoca, 2000 (in Romanian).

  2. I. Badea and D. Andrica, Voronovskaja-type theorems for certain non-positive linear operator, Rev. Anal. Num. Théor. Approx. 15 (1986), 95-103.
    MathSciNet

  3. C. Badea and C. Cottin, Korovkin-type Theorems for Generalized Boolean Sum Operators, Colloquia Mathematica Societatis János Bolyai, 58, Approximation Theory, Kecskemét (Hungary) (1990), 51-67.
    MathSciNet

  4. V. A. Baskakov, An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251.
    MathSciNet

  5. M. Becker and R. J. Nessel, A global approximation theorem for Meyer-König and Zeller operators, Math. Zeitschr. 160 (1978), 195-206.
    MathSciNet     CrossRef

  6. G. Bleimann, P. L. Butzer and L. A. Hahn, Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math. 42 (1980), 255-262.
    MathSciNet

  7. S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow (2), 13 (1912-1913), 1-2.

  8. E. W. Cheney and A. Sharma, Bernstein power series, Canadian J. Math. 16 (1964), 241-252.
    MathSciNet

  9. M. M. Derriennic, Sur l'approximation de fonctions intégrables sur [0,1] par les polynomes de Bernstein modifiés, J. Approx. Theory 31 (1981), 325-343.
    MathSciNet     CrossRef

  10. Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Verlag, Berlin, 1987.
    MathSciNet

  11. J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.

  12. J. Favard, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl. 23 (1944), 219-247.
    MathSciNet

  13. M. Ismail and C. P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446-462.
    MathSciNet     CrossRef

  14. L. V. Kantorovich, Sur certain développements suivant les polynomes de la forme de S. Bernstein, I, II, C. R. Acad. URSS (1930), 563-568, 595-600.

  15. W. Meyer-König and K. Zeller, Bernsteinsche Potenzreihen, Studia Math. 19 (1960), 89-94.
    MathSciNet

  16. G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR 31 (1941), 201-205 (in Russian).

  17. M. W. Müller, Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967.

  18. O. T. Pop, New properties of the Bernstein-Stancu operators, Anal. Univ. Oradea, Fasc. Matematica Tom XI (2004), 51-60.
    MathSciNet

  19. O. T. Pop, The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx. 34 (2005), 79-91.
    MathSciNet

  20. O. T. Pop, About a class of linear and positive operators, Carpathian J. Math. 21 (2005), 99-108.
    MathSciNet

  21. O. T. Pop, About some linear and positive operators defined by infinite sum, Dem. Math. 39 (2006), 377-388.
    MathSciNet

  22. O. T. Pop, On operators of Bleimann, Butzer and Hahn, Anal. Univ. Timisoara 43 (2005), 117-127.
    MathSciNet

  23. O. T. Pop, The generalization of Voronovskaja's theorem for a class of bivariate operators, to appear in Stud. Univ. Babes-Bolyai Math.

  24. O. T. Pop, The generalization of Voronovskaja's theorem for exponential operators, Creative Math. & Inf. 16 (2007), 54-62.
    MathSciNet

  25. O. T. Pop, About a general property for a class of linear positive operators and applications, Rev. Anal. Num. Théor. Approx. 34 (2005), 175-180.
    MathSciNet

  26. F. Schurer, Linear positive operators in approximation theory, Math. Inst. Tech. Univ. Delft. Report, 1962.

  27. D. D. Stancu, Asupra unei generalizari a polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai, Ser. Math.-Phys. 14 (1969), 31-45 (in Romanian).

  28. D. D. Stancu, Gh. Coman, O. Agratini and R. Trimbitas, Analiza numerica si teoria aproximarii, I, Presa Universitara Clujeana, Cluj-Napoca, 2001 (in Romanian).

  29. O. Szász, Generalization of. S. N. Bernstein's polynomials to the infinite interval, J. Research, National Bureau of Standards 45 (1950), 239-245.
    MathSciNet

  30. A. F. Timan, Theory of Approximation of Functions of a Real Variable, New York, Macmillan Co. 1963.
    MathSciNet

  31. E. Voronovskaja, Détermination de la forme asymptotique d'approximation des fonctions par les polynomes de M. Bernstein, C. R. Acad. Sci. URSS (1932), 79-85.

Glasnik Matematicki Home Page