Glasnik Matematicki, Vol. 43, No.1 (2008), 137-158.
FRICTIONAL CONTACT PROBLEM IN DYNAMIC ELECTROELASTICITY
Mostafa Kabbaj and El-H. Essoufi
Département de Mathématiques, Faculté des Sciences et Techniques,
Université Moulay Ismail, B.P. 509-Boutalamine 52000, Errachidia, Maroc
e-mail: kabbaj.mostafa@gmail.com
Département de Mathématiques,
Faculté des Sciences et Techniques, Universitée Hassan Premier,
Km 3, route Casablanca, B.P. 577, Settat, Maroc
e-mail: essoufi@gmail.com
Abstract. The dynamic evolution with frictional contact of a electroelastic
body is considered. In modelling the contact, the Tresca model is
used. We derive a variational formulation for the model in a
form of a coupled system involving the displacement and the
electric potential fields. We provide existence and uniqueness
result. The proof is based on a regularization method, Galerkin
method, compactness and lower semicontinuity arguments. Such a
result extend the result obtained by Duvaut and Lions, where the analysis
of friction in dynamic elasticity materials was provided. The
novelty of this paper consists in the fact that here we take into
account the piezoelectric properties of the materials.
2000 Mathematics Subject Classification.
35J20, 37L65, 46B50, 49J40, 65F22, 74H20, 74H25.
Key words and phrases. Dynamic electroelasticity, second-order hyperbolic variational
inequality, regularization method, Faedo-Galerkin method,
compactness method, existence, uniqueness.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.1.10
References:
- R. C. Batra and J. S. Yang,
Saint-Venant's principle in linear
piezoelectricity, Journal of Elasticity 38 (1995),
209-218.
MathSciNet
CrossRef
- P. Bisenga, F. Lebon and F. Maceri,
The unilateral
frictional contact of a piezoelectric body with a rigid support,
in: Contact Mechanics, J. A. C. Martins and Manuel D. P.
Monteiro Marques (Eds.), Kluwer, Dordrecht, 2002, p. 347-354.
MathSciNet
- G. Duvaut, J. L. Lions,
Les inéquations en mécanique et
en physique, Dunod, Paris, 1972.
MathSciNet
- C. Eck, J. Jarusek and M. Krbec,
Unilateral
Contact Problems, Pure and Applied Mathematics 270, Chapman
& Hall/CRC Press, Boca Raton, Florida, 2005.
MathSciNet
- El H. Essoufi and M. Kabbaj,
Existence of solutions of a
dynamic Signorini's Problem with non local friction for
viscoelastic Piezoelectric Materials,
Bull. Math. Soc. SC.
Math. Roumanie 48 (2005), 181-195.
MathSciNet
- El H. Essoufi and M. Sofonea,
A Piezoelectric Contact Problem
with Slip Dependent Coefficient of friction,
Mathematical
Modelling and Analysis 9 (2004), 229-242.
MathSciNet
- El H. Essoufi and M. Sofonea,
Quasistatic Frictional Contact
of a Viscoelastic Piezoelectric Body,
Advances in
Mathematical Sciences and Applications 14 (2004),
613-631.
MathSciNet
- W. Han and M. Sofonea,
Evolutionary Variational inequalities
arising in viscoelastic contact problems,
SIAM Journal of
Numerical Analysis 38 (2000), 556-579.
MathSciNet
CrossRef
- W. Han and M. Sofonea,
Quasistatic Contact Problems in
Viscoelasticity and Viscoplasticity, Studies in Advanced
Mathematics 30, Americal Mathematical Society - Intl. Press,
2002.
MathSciNet
- T. Ikeda,
Fundamentals of Piezoelectricity, Oxford
University Press, Oxford, 1990.
- I. R. Ionescu,
Viscosity solutions for dynamic problems with
slip-rate dependent friction,
Quart. Appl. Math. I.X 3 (2002), 461-476.
MathSciNet
- I. R. Ionescu, Q-L. Nguyen, S. Wolf,
Slip-dependent friction
in dynamic elasticity, Nonlinear Analysis 53 (2003),
375-390.
MathSciNet
CrossRef
- K. L. Kuttler and M. Shillor,
Dynamic contact with Signorini's
condition and slip rate dependent friction,
Electronic J.
Diff. Eqns. 83 (2004), 1-21.
MathSciNet
- K. L. Kuttler and M. Shillor,
Dynamic contact with normal
compliance wear and discontinuous friction coefficient, SIAM
J. Math. Anal. 34 (2002), 1-27.
MathSciNet
CrossRef
- F. Maceri and P. Bisegna,
The unilateral frictionless contact of
a piezoelectric body with a rigid support, Math. Comp.
Modelling 28 (1998), 19-28.
MathSciNet
CrossRef
- R. D. Mindlin,
Polarisation gradient in elastic dielectrics,
Int. J. Solids Structures 4 (1968), 637-663.
CrossRef
- R. D. Mindlin,
Continuum and lattice theories of influence of
electromechanical coupling on capacitance of thin dielectric films,
Int. J. Solids Structures 4 (1969), 1197-1213.
CrossRef
- R. D. Mindlin,
Elasticity, piezoelasticity and crystal lattice
dynamics, Journal of Elasticity 4 (1972), 217-280.
- J. Necas and I. Hlavácek, Mathematical Theory of
Elastic and Elasto-Plastic Bodies: An Introduction, Elsevier
Scientific Publishing Company, Amsterdam, Oxford, New York, 1981.
MathSciNet
- B. Tengiz and G. Tengiz,
Some Dynamic Problems of the Theory of
electroelasticity, Memoirs on Differential Equations and
Mathematical Physics 10 (1997), 1-53.
MathSciNet
- R. A. Toupin,
The elastic dielectrics, J. Rat. Mech.
Analysis 5 (1956), 849-915.
MathSciNet
- R. A. Toupin,
A dynamical theory of elastic dielectrics,
Int. J. Engrg. Sci. 1 (1963), 101-126.
MathSciNet
CrossRef
Glasnik Matematicki Home Page