Glasnik Matematicki, Vol. 43, No.1 (2008), 121-136.
APPROXIMATION AND MODULI OF FRACTIONAL ORDERS IN SMIRNOV-ORLICZ CLASSES
Ramazan Akgün and Daniyal M. Israfilov
Balikesir University, Faculty of Science and Art, Department of Mathematics,
10145, Balikesir, Turkey
e-mail: rakgun@balikesir.edu.tr
Institute of Math. and Mech. NAS Azerbaijan, F. Agayev Str. 9, Baku, Azerbaijan
e-mail: mdaniyal@balikesir.edu.tr
Abstract. In this work we investigate the approximation problems in the Smirnov-Orlicz
spaces in terms of the fractional modulus of smoothness. We prove the direct
and inverse theorems in these spaces and obtain a constructive descriptions
of the Lipschitz classes of functions defined by the fractional order
modulus of smoothness, in particular.
2000 Mathematics Subject Classification.
30E10, 46E30, 41A10, 41A25.
Key words and phrases. Orlicz space, Smirnov-Orlicz class, Dini-smooth curve, direct
theorems, inverse theorems, fractional modulus of smoothness.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.1.09
References:
- S. Ya. Al'per,
Approximation in the mean of analytic
functions of class Ep, in: Investigations on the modern problems of
the function theory of a complex variable. Gos. Izdat. Fiz.-Mat. Lit.,
Moscow, 1960, 272-286 (in Russian).
MathSciNet
- J. E. Andersson,
On the degree of polynomial
approximation in Ep(D), J. Approx. Theory 19
(1977), 61-68.
MathSciNet
CrossRef
- P. L. Butzer, H. Dyckhoff, E. Görlich and R. L. Stens,
Best trigonometric approximation, fractional order derivatives and
Lipschitz classes, Can. J. Math. 29 (1977), 781-793.
MathSciNet
- A. Cavus and D. M. Israfilov,
Approximation by Faber-Laurent rational functions in the mean of functions
of the class Lp(Γ) with 1 < p < ∞,
Approx. Theory Appl. 11 (1995), 105-118.
MathSciNet
- P. L. Duren, Theory of Hp spaces, Academic Press, 1970.
MathSciNet
- D. Gaier, Lectures on Complex Approximation, Birkhäuser,
1987.
MathSciNet
- G. M. Goluzin, Geometric theory of functions of a complex
variable, Translation of Mathematical Monographs Vol. 26,
AMS, Providence, 1969.
MathSciNet
- V. P. Havin,
Continuity in Lp of an
integral operator with the Cauchy kernel,
Vestnik Leningrad Univ. 22 (1967), 103-108 (in Russian, English summary).
MathSciNet
- D. M. Israfilov,
Approximate properties of the
generalized Faber series in an integral metric, Izv. Akad. Nauk Az. SSR,
Ser. Fiz.-Tekh. Math. Nauk 2 (1987), 10-14 (in Russian).
MathSciNet
- D. M. Israfilov,
Approximation by p-Faber polynomials in the
weighted Smirnov class Ep(G,ω) and the
Bieberbach polynomials, Constr. Approx. 17 (2001), 335-351.
MathSciNet
CrossRef
- D. M. Israfilov,
Approximation by p-Faber-Laurent rational
functions in the weighted Lebesgue spaces, Czechoslovak Math. J. 54
(2004), 751-765.
MathSciNet
CrossRef
- D. M. Israfilov and R. Akgün,
Approximation in
weighted Smirnov-Orlicz classes, J. Math. Kyoto Univ. 46 (2006),
755-770.
MathSciNet
- V. M. Kokilashvili,
On analytic functions of
Smirnov-Orlicz classes, Studia Math. 31 (1968), 43-59.
MathSciNet
- V. M. Kokilashvili,
Approximation of analytic functions of class Ep,
Proceedings of Math. Inst. of Tbilisi, 39 (1968), 82-102,
(in Russian).
MathSciNet
- V. M. Kokilashvili,
A direct theorem on mean approximation of
analytic functions by polynomials, Soviet Math. Dokl. 10 (1969),
411-414.
- I. P. Natanson, Teoriya funktsii veshestvennoy peremennoy,
Moscow-Leningrad, 1974.
MathSciNet
- Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Berlin,
Springer-Verlag, 1992.
MathSciNet
- M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel
Dekker, New York, 1991.
MathSciNet
- R. Ryan,
Conjugate functions in Orlicz space,
Pacific J. Math. 13 (1963), 1371-1377.
MathSciNet
- P. K. Suetin, Series of Faber polynomials, Gordon and
Breach Science Publishers, Amsterdam, 1998.
MathSciNet
- R. Taberski,
Differences, moduli and derivatives of
fractional orders, Comment. Math. 19 (1977), 389-400.
MathSciNet
- J. L. Walsh and H. G. Russel,
Integrated continuity conditions and degree of approximation by polynomials or by
bounded analytic functions, Trans. Amer. Math. Soc. 92 (1959),
355-370.
MathSciNet
CrossRef
- S. E. Warschawski,
Über das ranverhalten der
Ableitung der Abildungsfunktion bei Konformer Abbildung, Math. Z. 35 (1932), 321-456.
MathSciNet
CrossRef
- A. Zygmund, Trigonometric series, Vols. I and II, Cambridge University Press,
1959.
MathSciNet
Glasnik Matematicki Home Page