Glasnik Matematicki, Vol. 43, No.1 (2008), 97-109.
MINIMAL NONABELIAN AND MAXIMAL SUBGROUPS OF A FINITE p-GROUP
Yakov Berkovich
Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il
Abstract. The p-groups all of whose nonabelian maximal
subgroups are either absolutely regular or of maximal class, are
classified. For the main result of the papers by
Cepulic and Pylavska, and Zhang, An and Xu,
classifying the p-groups all of whose proper nonabelian subgroups
are metacyclic, we offer a proof which is shorter and not so
involved. In conclusion we study, in some detail, the p-groups
containing an abelian maximal subgroup.
2000 Mathematics Subject Classification.
20D15.
Key words and phrases. Metacyclic p-groups, p-groups of maximal class,
minimal nonabelian p-groups, absolutely regular p-groups, abelian
maximal subgroups, maximal abelian normal subgroups.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.1.07
References:
- Y. Berkovich,
On subgroups and epimorphic images of finite
p-groups, J. Algebra 248 (2002), 472-553.
MathSciNet
CrossRef
- Y. Berkovich,
On abelian subgroups of p-groups, J. Algebra
199 (1998), 262-280.
MathSciNet
CrossRef
- Y. Berkovich,
On subgroups of finite p-groups, J. Algebra
224 (2000), 198-240.
MathSciNet
CrossRef
- Y. Berkovich,
Finite p-groups with few minimal nonabelian
subgroups. With an appendix by Z. Janko, J. Algebra 297 (2006),
62--100.
MathSciNet
CrossRef
- Y. Berkovich,
Alternate proofs of
two characterization theorems
of Miller and Janko on 2-groups, and some related results, Glas.
Mat. Ser. III 42 (2007), 319-343.
MathSciNet
CrossRef
- Y. Berkovich,
On the number
of subgroups of given type in a
finite p-group, Glas. Mat. Ser. III 43 (2008), 59-95.
CrossRef
- Y. Berkovich,
Some corollaries of Frobenius' normal
p-complement theorem, Proc. Amer. Math. Soc. 129, 9 (1999),
2505-2509.
MathSciNet
CrossRef
- Y. Berkovich and Z. Janko,
Structure of finite p-groups
with given subgroups, Contemporary Mathematics 402 (2006), 13-93.
MathSciNet
- Y. Berkovich and Z. Janko,
On subgroups of finite p-groups,
submitted in Israel J. Math.
- N. Blackburn,
On a special class of p-groups, Acta Math.
100 (1958), 45-92.
MathSciNet
CrossRef
- N. Blackburn,
Generalizations of certain elementary theorems
on p-groups, Proc. London Math. Soc. 11 (1961), 1-22.
MathSciNet
CrossRef
- V. Cepulic and O. S. Pylavska,
A class of
nonabelian nonmetacyclic finite 2-groups, Glas. Mat. Ser. III 41(61) (2006),
65-70.
MathSciNet
CrossRef
- I. M. Isaacs, Character Theory of Finite Groups, Academic Press,
NY, 1976.
MathSciNet
- L. A. Nazarova and A. V. Roiter,
Finite generated modules over a
dyad of the local Dedekind rings and finite groups which possess an
abelian normal subgroup of index p, Izv. Akad. Nauk
SSSR, Ser. Mat. 33 (1969), 65-89 (in Russian).
MathSciNet
- L. A. Nazarova, A. V. Roiter, V. V. Sergeichuk, and V. M. Bondarenko,
Application of modules over a dyad to the classification
of finite p-groups that have an abelian subgroup of index p and
to the classification of pairs of mutually annihilating operators,
Investigation on the theory of representations, Zap.
Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 28
(1972), 69-92 (in Russian).
MathSciNet
- L. Redei,
Das "schiefe Produkt" in der Gruppentheorie mit
Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter
kommutativen echten Untergruppen und die Ordnungzahlen, zu denen nur
kommutative Gruppen gehören, Comment. Math. Helvet. 20
(1947), 225-267.
MathSciNet
CrossRef
- H. F. Tuan,
A theorem about p-groups with abelian subgroup of
index p, Acad. Sinica Science Record 3 (1950), 17-23.
MathSciNet
- Quinhai Zhang, Lijian An and Mingyao Xu,
Finite p-groups all
of whose non-abelian proper subgroups are metacyclic, Arch. Math.
(Basel) 87 (2006), 1-5.
MathSciNet
CrossRef
Glasnik Matematicki Home Page