Glasnik Matematicki, Vol. 43, No.1 (2008), 97-109.

MINIMAL NONABELIAN AND MAXIMAL SUBGROUPS OF A FINITE p-GROUP

Yakov Berkovich

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il


Abstract.   The p-groups all of whose nonabelian maximal subgroups are either absolutely regular or of maximal class, are classified. For the main result of the papers by Cepulic and Pylavska, and Zhang, An and Xu, classifying the p-groups all of whose proper nonabelian subgroups are metacyclic, we offer a proof which is shorter and not so involved. In conclusion we study, in some detail, the p-groups containing an abelian maximal subgroup.

2000 Mathematics Subject Classification.   20D15.

Key words and phrases.   Metacyclic p-groups, p-groups of maximal class, minimal nonabelian p-groups, absolutely regular p-groups, abelian maximal subgroups, maximal abelian normal subgroups.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.1.07


References:

  1. Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472-553.
    MathSciNet     CrossRef

  2. Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
    MathSciNet     CrossRef

  3. Y. Berkovich, On subgroups of finite p-groups, J. Algebra 224 (2000), 198-240.
    MathSciNet     CrossRef

  4. Y. Berkovich, Finite p-groups with few minimal nonabelian subgroups. With an appendix by Z. Janko, J. Algebra 297 (2006), 62--100.
    MathSciNet     CrossRef

  5. Y. Berkovich, Alternate proofs of two characterization theorems of Miller and Janko on 2-groups, and some related results, Glas. Mat. Ser. III 42 (2007), 319-343.
    MathSciNet     CrossRef

  6. Y. Berkovich, On the number of subgroups of given type in a finite p-group, Glas. Mat. Ser. III 43 (2008), 59-95.
    CrossRef

  7. Y. Berkovich, Some corollaries of Frobenius' normal p-complement theorem, Proc. Amer. Math. Soc. 129, 9 (1999), 2505-2509.
    MathSciNet     CrossRef

  8. Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Contemporary Mathematics 402 (2006), 13-93.
    MathSciNet

  9. Y. Berkovich and Z. Janko, On subgroups of finite p-groups, submitted in Israel J. Math.

  10. N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
    MathSciNet     CrossRef

  11. N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. 11 (1961), 1-22.
    MathSciNet     CrossRef

  12. V. Cepulic and O. S. Pylavska, A class of nonabelian nonmetacyclic finite 2-groups, Glas. Mat. Ser. III 41(61) (2006), 65-70.
    MathSciNet     CrossRef

  13. I. M. Isaacs, Character Theory of Finite Groups, Academic Press, NY, 1976.
    MathSciNet

  14. L. A. Nazarova and A. V. Roiter, Finite generated modules over a dyad of the local Dedekind rings and finite groups which possess an abelian normal subgroup of index p, Izv. Akad. Nauk SSSR, Ser. Mat. 33 (1969), 65-89 (in Russian).
    MathSciNet

  15. L. A. Nazarova, A. V. Roiter, V. V. Sergeichuk, and V. M. Bondarenko, Application of modules over a dyad to the classification of finite p-groups that have an abelian subgroup of index p and to the classification of pairs of mutually annihilating operators, Investigation on the theory of representations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 28 (1972), 69-92 (in Russian).
    MathSciNet

  16. L. Redei, Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungzahlen, zu denen nur kommutative Gruppen gehören, Comment. Math. Helvet. 20 (1947), 225-267.
    MathSciNet     CrossRef

  17. H. F. Tuan, A theorem about p-groups with abelian subgroup of index p, Acad. Sinica Science Record 3 (1950), 17-23.
    MathSciNet

  18. Quinhai Zhang, Lijian An and Mingyao Xu, Finite p-groups all of whose non-abelian proper subgroups are metacyclic, Arch. Math. (Basel) 87 (2006), 1-5.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page