Glasnik Matematicki, Vol. 43, No.1 (2008), 59-95.
ON THE NUMBER OF SUBGROUPS OF GIVEN TYPE IN A FINITE p-GROUP
Yakov Berkovich
Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il
Abstract. We study the p-groups G containing
exactly p+1 subgroups of order pp
and exponent p. A number of
counting theorems and results on subgroups of maximal class and
p-groups with few subgroups of given type are also proved.
Counting theorems play
crucial role in the whole paper.
2000 Mathematics Subject Classification.
20D15.
Key words and phrases. p-groups of maximal class, regular and absolutely
regular p-groups.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.1.06
References:
- Y. Berkovich,
On subgroups and epimorphic images of finite
p-groups, J. Algebra 248 (2002), 472-553.
MathSciNet
CrossRef
- Y. Berkovich,
Groups of Prime Power Order, Part I, in preparation.
- Y. Berkovich,
On subgroups of finite p-groups, J. Algebra
240 (2000), 198-240.
MathSciNet
CrossRef
- Y. Berkovich,
On abelian subgroups of p-groups, J. Algebra
199 (1998), 262-280.
MathSciNet
CrossRef
- Y. Berkovich,
Alternate proofs of some
basic theorems of
finite group theory, Glas. Mat. 40 (2005), 207-233.
MathSciNet
CrossRef
- Y. Berkovich,
On the number of elements of given order in a
finite p-group, Israel J. Math. 73 (1991), 107-112.
MathSciNet
CrossRef
- Y. Berkovich and Z. Janko,
Groups of Prime Power Order, Part II, in preparation.
- Y. Berkovich and Z. Janko,
Structure of finite p-groups with
given subgroups, Contemporary Mathematics 402 (2006), 13-93.
MathSciNet
- N. Blackburn,
On a special class of p-groups, Acta Math.
1 (1958), 45-92.
MathSciNet
CrossRef
- N. Blackburn,
Generalizations of certain elementary theorems
on p-groups, Proc. London Math. Soc. 11 (1961), 1-22.
MathSciNet
CrossRef
- P. Hall,
A contribution to the theory of groups of prime
power order, Proc. London Math. Soc. 36 (1933), 29-95.
Jahrbuch
- P. Hall,
On a theorem of Frobenius, Proc. London Math. Soc.
40 (1936), 468--501.
Jahrbuch
- M. Hall, Jr. and J.K. Senior, The groups of order 2n (n ≤ 6),
Macmillan, NY, 1964.
MathSciNet
- R. James,
2-groups of almost maximal class, J. Austral.
Math. Soc. (Ser A) 19 (1975), 343-357; corrigendum, ibid. 35 (1983), 307.
MathSciNet
- Z. Janko,
A classification of finite 2-groups with exactly
three involutions, J. Algebra 291 (2005), 505-533.
MathSciNet
CrossRef
- Z. Janko,
Finite 2-groups with exactly four cyclic
subgroups of order 2n, J. reine angew. Math. 566 (2004),
135-181.
MathSciNet
CrossRef
- Z. Janko,
Finite 2-groups G with
|Ω2(G)| = 16,
Glas. Mat. 40 (2005), 71-86.
MathSciNet
CrossRef
- A. Mann,
Conjugacy classes in finite groups, Israel J. Math.
31 (1978), 78-84.
MathSciNet
CrossRef
- D. S. Passman,
Nonnormal subgroups of p-groups, J. Algebra
15 (1970), 352-370.
MathSciNet
CrossRef
Glasnik Matematicki Home Page