Glasnik Matematicki, Vol. 43, No.1 (2008), 13-23.
ON PRIMAL AND WEAKLY PRIMAL IDEALS OVER COMMUTATIVE SEMIRINGS
Shahabaddin Ebrahimi Atani
Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran
Abstract. Since the theory of ideals plays an important role in the
theory of semirings, in this paper we will make an intensive study of the
notions of primal and weakly primal ideals in commutative semirings with an
identity 1. It is shown that these notions inherit most of the essential
properties of the primal and weakly primal ideals of a commutative ring
with non-zero identity. Also, the relationship among the families of weakly
prime ideals, primal ideals and weakly primal ideals of a semiring R is
considered.
2000 Mathematics Subject Classification.
16Y60.
Key words and phrases. Semiring, weakly prime, primal, weakly primal.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.1.03
References:
- D. D. Anderson and E. Smith,
Weakly prime ideals, Houston J.
of Math. 29 (2003), 831-840.
MathSciNet
- P. J. Allen,
A fundamental theorem of homomorphisms for
semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
MathSciNet
CrossRef
- P. J. Allen, J. Neggers and H. S. Kim,
Ideal theory in commutative
semirings, Kyungpook Math. J. 46 (2006), 261-271.
MathSciNet
- S. Ebrahimi Atani and F. Farzalipour,
On weakly primary ideals,
Georgian Math. J. 12 (2005), 423-429.
MathSciNet
- S. Ebrahimi Atani,
On k-weakly primary ideals over semirings,
Sarajevo J. Math. 3 (2007), 9-13.
MathSciNet
- S. Ebrahimi Atani,
The ideal theory in quotients
of commutative semirings, Glas. Mat. Ser. III 42 (2007), 301-308.
MathSciNet
CrossRef
- S. Ebrahimi Atani and A. Yousefian Darani,
On weakly primal
ideals (I), Demonstratio Mathematica 40 (2007), 23-32.
MathSciNet
- L. Fuchs,
On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.
MathSciNet
CrossRef
- L. Fuchs and E. Mosteig,
Ideal theory in Prufer domains,
J. Algebra 252 (2002), 411-430.
MathSciNet
CrossRef
- V. Gupta and J. N. Chaudhari,
Some remarks on semirings, Radovi
Matematicki 12 (2003), 13-18.
MathSciNet
- V. Gupta and J. N. Chaudhari,
Right π-regular semirings,
Sarajevo J. Math. 14 (2006), 3-9.
MathSciNet
- J. R. Mosher,
Generalized quotients of hemirings, Compositio
Math. 22 (1970), 275-281.
MathSciNet
- K. Murta,
On the quotient semigroup of a non-commutative
semigroup, Osaka Math. J. 2 (1950), 1-5.
- R. Y. Sharp,
Steps in Commutative Algebra, London Mathematics
Society Texts, Cambridge University Press, Cambridge, 1990.
MathSciNet
- H. Weinert,
Über Halbringe und Halbkorper II, Acta Math. Acad.
Sci. Hungary 14 (1963), 209-227.
MathSciNet
CrossRef
Glasnik Matematicki Home Page