Glasnik Matematicki, Vol. 43, No.1 (2008), 1-6.
ON MOD p MODULAR REPRESENTATIONS WHICH ARE
DEFINED OVER Fp
L. J. P. Kilford
Department of Mathematics, University of Bristol, University Walk,
Bristol, BS8 1TW, United Kingdom
Abstract. In this paper, we will use techniques of Conrey, Farmer and Wallace to
find spaces of modular forms Sk(Γ0(N))
where all of the eigenspaces have Hecke
eigenvalues defined over Fp,
and give a heuristic that these are all such spaces.
2000 Mathematics Subject Classification.
11F11, 11F33.
Key words and phrases. Modular forms, Hecke polynomials.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.1.01
References:
- S. Ahlgren,
On the irreducibility of Hecke polynomials,
Math. Comp., 2008, to appear.
CrossRef
- Srinath Baba and M. Ram Murty,
Irreducibility of Hecke polynomials,
Math. Res. Lett. 10 (2003), 709-715.
MathSciNet
- W. Bosma, J. Cannon, and C. Playoust,
The Magma algebra system I: The user language,
J. Symb. Comp. 24 (1997), 235-265.
See http://magma.maths.usyd.edu.au.
MathSciNet
CrossRef
- K. Buzzard,
On the eigenvalues of the Hecke operator T2,
J. Number Theory 57 (1996), 130-132.
MathSciNet
CrossRef
- H. Cohen and J. Oesterlé,
Dimensions des espaces de formes modulaires,
Lecture Notes in Mathematics 627 (1977), 69-78.
MathSciNet
- J. B. Conrey, D. W. Farmer, and P. J. Wallace,
Factoring Hecke polynomials modulo a prime,
Pacific J. Math. 196 (2000), 123-130.
MathSciNet
- K. James and K. Ono,
A note on the irreducibility of Hecke polynomials,
J. Number Theory 73 (1998), 527-532.
MathSciNet
CrossRef
- N. M. Katz,
p-adic properties of modular schemes and modular forms,
in Modular functions of one variable, III (Proc. Internat.
Summer School, Univ. Antwerp, Antwerp, 1972), pp. 69-190.
Lecture Notes in Mathematics 350, Springer, Berlin, 1973.
MathSciNet
- W. A. Stein,
Modular forms, a computational approach. With an appendix by Paul E. Gunnells.,
Graduate Studies in Mathematics, American Mathematical Society, Providence, 2007.
MathSciNet
Glasnik Matematicki Home Page