Glasnik Matematicki, Vol. 42, No.2 (2007), 401-409.
MORPHISMS OF EXTENSIONS OF HILBERT C*-MODULES
Biserka Kolarec
Department of Informatics and Mathematics, Faculty of Agriculture,
University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
e-mail: bkudelic@agr.hr
Abstract. We consider the condition for a morphism of (between) extensions
of Hilbert C*-modules
to exist and give the description of a morphism out of an extension of a Hilbert C*-module
in a general case.
2000 Mathematics Subject Classification.
46C50, 46L08.
Key words and phrases. Hilbert C*-module, morphism, extension, idealizer.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.2.13
References:
- W. Arveson, Notes on extensions of C*-algebras,
Duke Math. J. 44 (1977), 329-355.
MathSciNet
CrossRef
- D. Bakic, B. Guljas, On a class of module maps of Hilbert C*-modules,
Math. Commun. 7 (2002), 177-192.
MathSciNet
- D. Bakic, B. Guljas, Extensions of Hilbert C*-modules,
Houston J. Math. 30 (2004), 537-558.
MathSciNet
- D. Bakic, B. Guljas, Extensions
of Hilbert C*-modules II,
Glas. Mat. Ser. III 38 (2003), 341-357.
MathSciNet
CrossRef
- D. Bakic, Tietze extension theorem for Hilbert C*-modules,
Proc. Amer. Math. Soc. 133 (2005), 441-448.
MathSciNet
CrossRef
- L. G. Brown, R. G. Douglas, P. A. Fillmore, Unitary equivalence modulo the
compact operators and extensions of C*-algebras,
Lecture Notes in Mathematics 345, Springer-Verlag, 1973, 58-128.
MathSciNet
- R. C. Busby, Double cenralizers and extensions of C*-algebras,
Trans. Amer. Math. Soc. 132 (1968), 79-99.
MathSciNet
CrossRef
- S. Eilers, T. A. Loring, G. K. Pedersen, Morphisms of extensions of C*-algebras:
Pushing forward the Busby invariant, Adv. Math 147 (1999), 74-109.
MathSciNet
CrossRef
- B. Kolarec, Morphisms
out of a split extension of a Hilbert C*-module,
Glas. Mat. Ser. III 41 (2006), 309-315.
MathSciNet
CrossRef
- E. C. Lance, Hilbert C*-modules - a toolkit for operator algebraists,
Lecture Note Series 210, Cambridge University Press, 1995.
MathSciNet
- S. MacLane, Categories for the Working Mathematician, Graduate Texts in Math., vol. 5,
Springer-Verlag, 1971.
MathSciNet
- T. A. Loring, Lifting Solutions to Perturbing Problems in C*-algebras,
Fields Institute Monographs, 1997.
MathSciNet
- G. K. Pedersen, Extensions of C*-algebras, preprint.
- G. K. Pedersen, Pullback and pushout construction in C*-algebra theory,
J. Funct. Anal. 167 (1999), 143-344.
MathSciNet
CrossRef
Glasnik Matematicki Home Page