Glasnik Matematicki, Vol. 42, No.2 (2007), 389-399.
SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS AND
CONTINUOUS SOLUTIONS OF RELATED EQUATIONS
Rafal Kapica
Institute of Mathematics, Silesian University, Bankowa 14, PL-40-007 Katowice, Poland
e-mail: rkapica@ux2.math.us.edu.pl
Abstract. Given a probability space
(Ω, A, P),
a separable metric space X, and
a random-valued vector function f : X ×
Ω → X, we obtain some theorems on the existence
and on the uniqueness of continuous solutions
φ : X → R of
the equation
φ(x) = ∫Ω
φ(f(x,ω)) P(dω).
2000 Mathematics Subject Classification.
39B12, 39B52, 60B12.
Key words and phrases. Random-valued vector functions, sequences of iterates,
iterative functional equations, continuous solutions.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.2.12
References:
- K. Baron, Recent results in the theory of functional equations in a single variable,
Seminar LV 15 (2003), 16 pp.
- K. Baron, W. Jarczyk, Recent results on functional equations in a single variable,
perspectives and open problems, Aequationes Math. 61 (2001), 1-48.
MathSciNet
CrossRef
- K. Baron, W. Jarczyk, Random-valued functions and iterative functional equations,
Aequationes Math. 67 (2004), 140-153.
MathSciNet
CrossRef
- K. Baron, M. Kuczma, Iteration of random-valued functions on the unit interval,
Colloq. Math. 37 (1977), 263-269.
MathSciNet
- Ph. Diamond, A stochastic functional equation,
Aequationes Math. 15 (1977), 225-233.
MathSciNet
CrossRef
- R. Kapica, Sequences of iterates of random-valued vector functions and
continuous solutions of a linear functional equation of infinite order,
Bull. Polish Acad. Sci. Math. 50 (2002), 447-455.
MathSciNet
- R. Kapica, Convergence of sequences of iterates of random-valued vector functions,
Colloq. Math. 97 (2003), 1-6.
MathSciNet
- R. Kapica,
Sequences of iterates of random-valued vector functions and solutions of related equations,
Sitzungsber. Abt. II 213 (2004), 113-118.
MathSciNet
- M. Kuczma, Functional equations in a single variable, Panstwowe Wydawnictwo Naukowe,
Warszawa, 1968.
MathSciNet
- M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations,
Cambridge University Press, Cambridge, 1990.
MathSciNet
- S. Lojasiewicz, An introduction to the theory of real functions,
John Wiley and Sons, New York 1988.
MathSciNet
- J. Morawiec, On a linear functional equation,
Bull. Polish Acad. Sci. Math. 43 (1995), 131-142.
MathSciNet
- J. Morawiec, Some properties of probability distribution solutions of linear
functional equations, Aequationes Math. 56 (1998), 81-90.
MathSciNet
CrossRef
- S. Paganoni Marzegalli, One-parameter system of functional equations,
Aequationes Math. 47 (1994), 50-59.
MathSciNet
CrossRef
- W. Sierpinski, Sur un système d'equations fonctionnelles, définissant
une fonction avec un ensemble dense d'intervalles d'invariabilité,
Bull. Intern. Acad. Sci. Cracovie A (1911), 577-582.
Glasnik Matematicki Home Page