Glasnik Matematicki, Vol. 42, No.2 (2007), 389-399.

SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF RELATED EQUATIONS

Rafal Kapica

Institute of Mathematics, Silesian University, Bankowa 14, PL-40-007 Katowice, Poland
e-mail: rkapica@ux2.math.us.edu.pl


Abstract.   Given a probability space (Ω, A, P), a separable metric space X, and a random-valued vector function f : X × Ω → X, we obtain some theorems on the existence and on the uniqueness of continuous solutions φ : XR of the equation φ(x) = ∫Ω φ(f(x,ω)) P(dω).

2000 Mathematics Subject Classification.   39B12, 39B52, 60B12.

Key words and phrases.   Random-valued vector functions, sequences of iterates, iterative functional equations, continuous solutions.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.2.12


References:

  1. K. Baron, Recent results in the theory of functional equations in a single variable, Seminar LV 15 (2003), 16 pp.

  2. K. Baron, W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math. 61 (2001), 1-48.
    MathSciNet     CrossRef

  3. K. Baron, W. Jarczyk, Random-valued functions and iterative functional equations, Aequationes Math. 67 (2004), 140-153.
    MathSciNet     CrossRef

  4. K. Baron, M. Kuczma, Iteration of random-valued functions on the unit interval, Colloq. Math. 37 (1977), 263-269.
    MathSciNet

  5. Ph. Diamond, A stochastic functional equation, Aequationes Math. 15 (1977), 225-233.
    MathSciNet     CrossRef

  6. R. Kapica, Sequences of iterates of random-valued vector functions and continuous solutions of a linear functional equation of infinite order, Bull. Polish Acad. Sci. Math. 50 (2002), 447-455.
    MathSciNet

  7. R. Kapica, Convergence of sequences of iterates of random-valued vector functions, Colloq. Math. 97 (2003), 1-6.
    MathSciNet

  8. R. Kapica, Sequences of iterates of random-valued vector functions and solutions of related equations, Sitzungsber. Abt. II 213 (2004), 113-118.
    MathSciNet

  9. M. Kuczma, Functional equations in a single variable, Panstwowe Wydawnictwo Naukowe, Warszawa, 1968.
    MathSciNet

  10. M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Cambridge University Press, Cambridge, 1990.
    MathSciNet

  11. S. Lojasiewicz, An introduction to the theory of real functions, John Wiley and Sons, New York 1988.
    MathSciNet

  12. J. Morawiec, On a linear functional equation, Bull. Polish Acad. Sci. Math. 43 (1995), 131-142.
    MathSciNet

  13. J. Morawiec, Some properties of probability distribution solutions of linear functional equations, Aequationes Math. 56 (1998), 81-90.
    MathSciNet     CrossRef

  14. S. Paganoni Marzegalli, One-parameter system of functional equations, Aequationes Math. 47 (1994), 50-59.
    MathSciNet     CrossRef

  15. W. Sierpinski, Sur un système d'equations fonctionnelles, définissant une fonction avec un ensemble dense d'intervalles d'invariabilité, Bull. Intern. Acad. Sci. Cracovie A (1911), 577-582.


Glasnik Matematicki Home Page