Glasnik Matematicki, Vol. 42, No.2 (2007), 375-388.
QUASILINEAR DIRICHLET PROBLEM IN A PERIODICALLY PERFORATED DOMAIN
L. Boukrim, A. Hakim and T. Mekkaoui
Université Moulay Ismail, F.S.T.E, BP509 Boutalamine Errachidia, Maroc
Université Cadi Ayyad, F.S.T.G, BP 549 Av. Abdelkrim Khattabi Marrakech, Maroc
Université Moulay Ismail, F.S.T.E, BP509 Boutalamine Errachidia, Maroc
Abstract. Consider the following quasilinear Dirichlet problem
(Pε)
-Δp uε =
fε in Ωε =
Ω \ Tε
uε = 0 on ∂ Ωε
where 1 < p ≤ 2, (fε) a sequence of
functions in Lp'(Ω)
such that fε → f
in Lp'(Ω) where p'
is the conjugate of p, Ω is a bounded
domain in RN
(N ≥ 2) and Tε the union of
inclusions contained in Ω which are ε-periodically
distributed. In this paper we give the limit problem and errors estimates
for the problem (Pε).
2000 Mathematics Subject Classification.
35B27, 35B40, 35J60.
Key words and phrases. Homogenization, perforated domain,
quasilinear elliptic equations, correctors.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.2.11
References:
- H. Attouch, Variational convergence for functions and
operators, Applicable Mathematics Series, Pitman, London, 1984.
MathSciNet
- L. Boukrim, A. Hakim and T. Mekkaoui, Limiting behaviour and
error estimates for the Dirichlet problem with p-Laplacian in a
periodically perfored domain, in preparation.
- D. Cioranescu and F. Murat, Un terme étrange venu
d'aileurs, Collège de France Seminar, Research Notes in Mathematics,
Pitman, London, 1982, No. 60, pp. 98-138, No. 70, pp. 154-178.
- D. Cioranescu and P. Donato, An Introduction to Homogenization,
Oxford Univ. Press, 1999.
MathSciNet
- G. Dal Maso, An Introduction to Γ-convergence,
Birkhäuser, Boston, 1993.
MathSciNet
- G. Dal Maso and P. Longo, Γ-limits of obstacles, Ann.
Mat. Pura Appl. 128 (1981), 1-50.
MathSciNet
CrossRef
- E. De Giorgi and T. Franzoni, Su un tipo di convergenza
variazionale, Rend. Acad. Naz. Lincei 58 (1975), 842-850.
MathSciNet
- R. Glowinski and A. Marroco, Sur l'approximation par
éléments finis d'ordre un, et la résolution, par
pénalisation -dualité, d'une classe de problémes de Dirichlet
non linéaires, RAIRO 9 (1975), 41-76.
MathSciNet
- N. Labani and C. Picard, Homogenization of nonlinear
Dirichlet problem in a perfored domain, in "Recent advances in nonlinear
elliptic and parabolic problems", Pitman Res. Notes Math. Ser. 208 (1989), 296-305.
MathSciNet
- T. Mekkaoui and C. Picard, Error estimates for the
homogenization of a quasilinear Dirichlet problem in a periodically perfored
domain, Progress in P.D.E: the Metz Survey 2, M. Chipot Ed., Pitman Res.
Notes in Math. Series 296 (1993), 185-193.
MathSciNet
- C. Picard, Analyse limite d'équations variationnelles dans
un domaine contenant une grille, Math. Model. Numer.
Anal. 21 (1987), 293-326.
MathSciNet
- D. Sandri, Sur l'approximation numérique des
écoulements quasi-newtoniens dont la viscosité suit la loi puissance
ou la loi de carreau, Math. Model. Numer. Anal. 27
(1993), 131-155.
MathSciNet
- L. Tartar, Cours Peccot au collège de France, mars 1977,
non publié.
Glasnik Matematicki Home Page