Glasnik Matematicki, Vol. 42, No.2 (2007), 363-373.

VECTORS AND TRANSFERS IN HEXAGONAL QUASIGROUP

Mea Bombardelli and Vladimir Volenec

Department of Mathematics, University of Zagreb, 10000 Zagreb, Croatia
e-mail: Mea.Bombardelli@math.hr
e-mail: volenec@math.hr


Abstract.   Hexagonal quasigroup is idempotent, medial and semisymmetric quasigroup. In this article we define and study vectors, sum of vectors and transfers. The main result is the theorem on isomorphism between the group of vectors, group of transfers and the Abelian group from the characterization theorem of the hexagonal quasigroups.

2000 Mathematics Subject Classification.   20N05.

Key words and phrases.   Quasigroup, hexagonal quasigroup, vector, transfer.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.2.10


References:

  1. J. Lettrich and J. Perencaj, Algebraicke studium struktury rovnostrannych trojuholnikov, Prace a studie VSD, Seria matematicko-fyzikalna, cislo 1, Zilina (1974), 113-120 (in Czech).
    MathSciNet

  2. V. Volenec, Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet. 421 (1986), 79-91.
    MathSciNet

  3. V. Volenec, Hexagonal quasigroups, Arch. Math. (Brno) 27a (1991), 113-122.
    MathSciNet

  4. V. Volenec, Regular triangles in hexagonal quasigroups, Rad Hrvatske Akad. Znan. Umjet. 467 (1994), 85-93.
    MathSciNet


Glasnik Matematicki Home Page