Glasnik Matematicki, Vol. 42, No.2 (2007), 357-362.

ON A CHARACTERIZATION OF QUASICYCLIC GROUPS

Dabin Zheng, Yujie Ma and Heguo Liu

Faculty of Mathematics and Computer Science, Hu Bei University, Wuhan 430062, Hubei Province, China
e-mail: zhengdabin@mmrc.iss.ac.cn

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
e-mail: yjma@mmrc.iss.ac.cn

Faculty of Mathematics and Computer Science, Hu Bei University, Wuhan 430062, Hubei Province, China
e-mail: liuheguo0@163.com


Abstract.   Let G be an infinite solvable group (resp. an infinite group properly containing its commutator subgroup G'). We prove that G is isomorphic to a quasicyclic group if and only if all proper normal subgroups of G are finitely generated (resp. all proper normal subgroups of G are cyclic or finite).

2000 Mathematics Subject Classification.   20E18, 20F16, 20E34.

Key words and phrases.   Quasicyclic group, hypo-inner Σ group, commutator subgroup, solvable group.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.2.09


References:

  1. Z. Chen, Infinite inner Σ groups and Zp, Journal of Southwest China Normal University 2 (1979), (in Chinese).

  2. Z. Chen, Inner Σ Groups (in Chinese), Acta Math. Sinica 23 (1980), 239-243.
    MathSciNet

  3. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.
    MathSciNet

  4. A. J. Ol'sanskii, Infinite groups with cyclic subgroups, Dokl. Akad. Nauk SSSR. 245 (1979), 785-787.
    MathSciNet

  5. D. J. S. Robinson, A Course in the Theory of Groups, Springer, 1982.
    MathSciNet

  6. N. F. Sesekin and O. S. Shirokovsraya, A class of bigraded groups, Mat. Sb. N. S. 46 (1958), 133-142.
    MathSciNet


Glasnik Matematicki Home Page