Glasnik Matematicki, Vol. 42, No.2 (2007), 281-289.
ON A DIOPHANTINE EQUATION RELATED TO A CONJECTURE OF ERDÖS AND GRAHAM
F. Luca and P. G. Walsh
Instituto de Matemáticas UNAM, Campus Morelia, Ap. Postal 61-3 Xangari,
CP 58 089, Morelia, Michoacan, México
e-mail: fluca@matmor.unam.mx
Department of Mathematics, University of Ottawa, 585 King Edward St.,
Ottawa, Ontario, Canada K1N 6N5
e-mail: gwalsh@mathstat.uottawa.ca
Abstract. A particular case of a conjecture of Erdös and Graham, which concerns
the number of integer points on a family of quartic curves, is investigated.
An absolute bound for the number of such integer points is obtained.
2000 Mathematics Subject Classification.
11D25.
Key words and phrases. Linear recurrence, elliptic curve, Diophantine equation.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.2.03
References:
- M. A. Bennett, On consecutive integers of the form ax2,
by2, cz2,
Acta Arith. 88 (1999), 363-370.
MathSciNet
- J. H. E. Cohn, The Diophantine equation
x4 - Dy2 = 1 II,
Acta Arith. 78 (1997), 401-403.
MathSciNet
- P. Erdös and R. L. Graham,
Old and New Problems and Results in Combinatorial Number Theory,
Monograph Enseign. Math. 28, Geneva, 1980.
MathSciNet
- D. H. Lehmer,
An extended theory of Lucas functions,
Ann. Math. 31 (1930), 419-448.
MathSciNet
CrossRef
- W. Ljunggren,
Über die Gleichung x4 - Dy2 = 1,
Arch. Math. Naturv. 45 (1942), 61-70.
MathSciNet
- E. M. Matveev,
An explicit lower bound for a homogeneous rational linear form in logarithms
of algebraic numbers. II,
Izv. Math. 64 (2000), 1217-1269.
MathSciNet
CrossRef
- T. Nagell,
On a special class of Diophantine equations of the second degree,
Ark. Math. 3 (1954), 51-65.
MathSciNet
CrossRef
- T. Nagell,
Introduction to Number Theory (2nd ed.),
Chelsea, New York, 1964.
MathSciNet
- I. Nemes and A. Pethö,
Polynomial values in linear recurrences II,
J. Number Theory 24 (1986), 47-53.
MathSciNet
CrossRef
- T. N. Shorey and C. L. Stewart,
On the diophantine equation ax2t +
bxty + cy2 = d and
pure powers in recurrence sequences,
Math. Scand. 52 (1983), 24-36.
MathSciNet
- M. Ulas,
On products of disjoint blocks of consecutive integers,
L'Enseignement Math. 51 (2005), 331-334.
MathSciNet
- P. Yuan,
On the number of solutions of x2 -
4m(m + 1)y2 = y2 -
bz2 = 1,
Proc. Amer. Math. Soc. 132 (2004), 1561-1566.
MathSciNet
CrossRef
Glasnik Matematicki Home Page