Glasnik Matematicki, Vol. 42, No.2 (2007), 273-279.

ON POWERS IN SHIFTED PRODUCTS

K. Gyarmati and C. L. Stewart

Alfréd Rényi Institute of Mathematics, 13-15 Reáltanoda u., 1053 Budapest, Hungary
e-mail: gykati@renyi.hu

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
e-mail: cstewart@uwaterloo.ca


Abstract.   In this note we give an estimate for the size of a subset A of {1, ..., N} which has the property that the product of any two distinct elements of A plus 1 is a perfect power.

2000 Mathematics Subject Classification.   11B75, 11D99.

Key words and phrases.   Perfect powers, extremal graph theory.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.2.02


References:

  1. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. reine angew. Math. 442 (1993), 19-62.
    MathSciNet

  2. B. Bollobás, Extremal Graph Theory, London Mathematical Society Monographs No. 11, Academic Press, London, New York, San Francisco, 1978.
    MathSciNet

  3. Y. Bugeaud and K. Gyarmati, On generalizations of a problem of Diophantus, Illinois J. Math. 48 (2004), 1105-1115.
    MathSciNet

  4. A. Dujella, There are only finitely many Diophantine quintuples, J. reine angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  5. K. Gyarmati, On a problem of Diophantus, Acta Arith. 97 (2001), 53-65.
    MathSciNet

  6. K. Gyarmati, A. Sárközy and C. L. Stewart, On shifted products which are powers, Mathematika 49 (2002), 227-230.
    MathSciNet

  7. T. Kövári, V. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954), 50-57.
    MathSciNet

  8. F. Luca, On shifted products which are powers, Glas. Mat. Ser. III 40 (2005), 13-20.
    MathSciNet     CrossRef

  9. P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452 (in Hungarian).
    Jahrbuch


Glasnik Matematicki Home Page