Glasnik Matematicki, Vol. 42, No.2 (2007), 273-279.
ON POWERS IN SHIFTED PRODUCTS
K. Gyarmati and C. L. Stewart
Alfréd Rényi Institute of Mathematics, 13-15 Reáltanoda u.,
1053 Budapest, Hungary
e-mail: gykati@renyi.hu
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
e-mail: cstewart@uwaterloo.ca
Abstract. In this note we give an estimate for the size of a subset
A of {1, ..., N} which has the property that
the product of any two distinct elements of A plus 1 is a perfect power.
2000 Mathematics Subject Classification.
11B75, 11D99.
Key words and phrases. Perfect powers, extremal graph theory.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.2.02
References:
- A. Baker and G. Wüstholz, Logarithmic forms and group varieties,
J. reine angew. Math. 442 (1993), 19-62.
MathSciNet
- B. Bollobás, Extremal Graph Theory,
London Mathematical Society Monographs No. 11,
Academic Press, London, New York, San Francisco, 1978.
MathSciNet
- Y. Bugeaud and K. Gyarmati, On generalizations of a problem of Diophantus,
Illinois J. Math. 48 (2004), 1105-1115.
MathSciNet
- A. Dujella, There are only finitely many Diophantine quintuples,
J. reine angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- K. Gyarmati, On a problem of Diophantus,
Acta Arith. 97 (2001), 53-65.
MathSciNet
- K. Gyarmati, A. Sárközy and C. L. Stewart,
On shifted products which are powers, Mathematika 49 (2002), 227-230.
MathSciNet
- T. Kövári, V. Sós and P. Turán,
On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954), 50-57.
MathSciNet
- F. Luca, On shifted products
which are powers,
Glas. Mat. Ser. III 40 (2005), 13-20.
MathSciNet
CrossRef
- P. Turán, On an extremal problem in graph theory,
Mat. Fiz. Lapok 48 (1941), 436-452 (in Hungarian).
Jahrbuch
Glasnik Matematicki Home Page