Glasnik Matematicki, Vol. 42, No.1 (2007), 237-256.
HEEGAARD FLOER HOMOLOGY AND KNOT CONCORDANCE:
A SURVEY OF RECENT ADVANCES
Stanislav Jabuka
Department of Mathematics and Statistics, 084, University of Nevada Reno,
89557 Reno, NV, USA
e-mail: jabuka@unr.edu
Abstract. This article surveys some recent advances made in the
understanding of the smooth knot concordance group
C. The
focus is exclusively on those results which have been driven by
Heegaard Floer homology. Three invariants are discussed: the knot
concordance epimorphisms
τ, δ : C
→ Z and the correction terms of double branched covers of
knots.
2000 Mathematics Subject Classification.
57M25, 57M27.
Key words and phrases. Heegaard Floer homology, knot concordance, slice genus.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.1.16
References:
- A. J. Casson and C. McA. Gordon,
On slice knots in dimension three,
in: Algebraic and geometric topology (Stanford, 1976), Part 2,
Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc.,
Providence, 1978, 39-53.
MathSciNet
- A. J. Casson and C. McA. Gordon,
Cobordism of classical knots,
Progr. Math. 62, Birkhäuser Boston, Boston, MA, 1986,
181-199.
MathSciNet
- H. Endo,
Linear independence of topologically slice knots
in the smooth cobordism group, Topology Appl. 63 (1995),
257-262.
MathSciNet
CrossRef
- M. H. Freedman,
The topology of four-dimensional manifolds,
J. Differential Geom. 17 (1982), 357-453.
MathSciNet
- M. H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Mathematical
Series 39, Princeton University Press, Princeton, 1990.
MathSciNet
- R. Gompf,
Smooth concordance of topologically slice knots,
Topology 25 (1986), 353-373.
MathSciNet
CrossRef
- S. Jabuka and S. Naik,
Order in the concordance group and Heegaard Floer homology,
Geom. Topol. 11 (2007), 979-994.
CrossRef
- B. J. Jiang,
A simple proof that the concordance group of algebraically slice
knots is infinitely generated, Proc. Amer. Math. Soc 83 (1981), 189-192.
MathSciNet
CrossRef
- L. H. Kauffman,
On knots, Annals of Mathematics Studies 115, Princeton
University Press, Princeton, 1987.
MathSciNet
- P. B. Kronheimer and T. S. Mrowka,
Gauge theory for embedded surfaces I, Topology 32
(1993), 773-826.
MathSciNet
CrossRef
- J. Levine,
Knot cobordism groups in codimension two,
Comment. Math. Helv. 44 (1969), 229-244.
MathSciNet
CrossRef
- J. Levine,
Invariants of knot cobordism, Invent.
Math. 8 (1969), 98-110.
MathSciNet
CrossRef
- C. Livingston,
Order 2 algebraically slice knots,
in: Proceedings of the Kirbyfest (Berkeley, 1998), Geom. Topol.
Monogr. 2, Geom. Topol. Publ., Coventry, 1999, 335-342.
MathSciNet
CrossRef
- C. Livingston,
Computations of the Ozsváth-Szabó knot concordance invariant,
Geom. Topol. 8 (2004), 735-742.
MathSciNet
CrossRef
- C. Livingston,
Slice knots with distinct Ozsváth-Szabó and Rasmussen invariants,
preprint,
math.GT/0602631.
- C. Livingston and S. Naik,
Obstructing four-torsion in the classical knot concordance group,
J. Differential Geom. 51 (1999), 1-12.
MathSciNet
- C. Livingston and S. Naik,
Knot concordance and torsion,
Asian J. Math. 5 (2001), 161-167.
MathSciNet
- J. Milnor,
Singular points of complex hypersurfaces, Annals of Mathematics Studies
61, Princeton University Press, Princeton, 1968.
MathSciNet
- C. Manolescu and B. Owens,
A concordance invariant from the Floer homology
of double branched covers, preprint,
math.GT/0508065.
- P. Ozsváth and Z. Szabó,
Absolutely graded Floer homologies and intersection forms
for four-manifolds with boundary, Adv. Math. 173 (2003),
179-261.
MathSciNet
CrossRef
- P. Ozsváth and Z. Szabó,
Holomorphic disks and knot
invariants, Adv. Math. 186 (2004), 58-116.
MathSciNet
CrossRef
- P. Ozsváth and Z. Szabó,
Holomorphic disks and three-manifold invariants:
properties and applications, Ann. of Math. (2) 159 (2004),
1159-1245.
MathSciNet
- P. Ozsváth and Z. Szabó,
Holomorphic disks and topological invariants for closed
three-manifolds, Ann. of Math. (2) 159 (2004), 1027-1158.
MathSciNet
- P. Ozsváth and Z. Szabó,
Knot Floer homology and the four-ball genus,
Geom. Topol. 7 (2003), 615-639.
MathSciNet
CrossRef
- J. Rasmussen,
Khovanov homology and the slice genus, preprint,
math.GT/0402131.
- A. Tamulis,
Knots of ten or fewer crossings of algebraic order 2,
J. Knot Theory Ramifications 11 (2002), 211-222.
MathSciNet
CrossRef
Glasnik Matematicki Home Page