Glasnik Matematicki, Vol. 42, No.1 (2007), 237-256.

HEEGAARD FLOER HOMOLOGY AND KNOT CONCORDANCE: A SURVEY OF RECENT ADVANCES

Stanislav Jabuka

Department of Mathematics and Statistics, 084, University of Nevada Reno, 89557 Reno, NV, USA
e-mail: jabuka@unr.edu


Abstract.   This article surveys some recent advances made in the understanding of the smooth knot concordance group C. The focus is exclusively on those results which have been driven by Heegaard Floer homology. Three invariants are discussed: the knot concordance epimorphisms τ, δ : CZ and the correction terms of double branched covers of knots.

2000 Mathematics Subject Classification.   57M25, 57M27.

Key words and phrases.   Heegaard Floer homology, knot concordance, slice genus.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.16


References:

  1. A. J. Casson and C. McA. Gordon, On slice knots in dimension three, in: Algebraic and geometric topology (Stanford, 1976), Part 2, Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc., Providence, 1978, 39-53.
    MathSciNet

  2. A. J. Casson and C. McA. Gordon, Cobordism of classical knots, Progr. Math. 62, Birkhäuser Boston, Boston, MA, 1986, 181-199.
    MathSciNet

  3. H. Endo, Linear independence of topologically slice knots in the smooth cobordism group, Topology Appl. 63 (1995), 257-262.
    MathSciNet     CrossRef

  4. M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357-453.
    MathSciNet

  5. M. H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Mathematical Series 39, Princeton University Press, Princeton, 1990.
    MathSciNet

  6. R. Gompf, Smooth concordance of topologically slice knots, Topology 25 (1986), 353-373.
    MathSciNet     CrossRef

  7. S. Jabuka and S. Naik, Order in the concordance group and Heegaard Floer homology, Geom. Topol. 11 (2007), 979-994.
    CrossRef

  8. B. J. Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc 83 (1981), 189-192.
    MathSciNet     CrossRef

  9. L. H. Kauffman, On knots, Annals of Mathematics Studies 115, Princeton University Press, Princeton, 1987.
    MathSciNet

  10. P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces I, Topology 32 (1993), 773-826.
    MathSciNet     CrossRef

  11. J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
    MathSciNet     CrossRef

  12. J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110.
    MathSciNet     CrossRef

  13. C. Livingston, Order 2 algebraically slice knots, in: Proceedings of the Kirbyfest (Berkeley, 1998), Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry, 1999, 335-342.
    MathSciNet     CrossRef

  14. C. Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geom. Topol. 8 (2004), 735-742.
    MathSciNet     CrossRef

  15. C. Livingston, Slice knots with distinct Ozsváth-Szabó and Rasmussen invariants, preprint,
    math.GT/0602631.

  16. C. Livingston and S. Naik, Obstructing four-torsion in the classical knot concordance group, J. Differential Geom. 51 (1999), 1-12.
    MathSciNet

  17. C. Livingston and S. Naik, Knot concordance and torsion, Asian J. Math. 5 (2001), 161-167.
    MathSciNet

  18. J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton University Press, Princeton, 1968.
    MathSciNet

  19. C. Manolescu and B. Owens, A concordance invariant from the Floer homology of double branched covers, preprint,
    math.GT/0508065.

  20. P. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), 179-261.
    MathSciNet     CrossRef

  21. P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), 58-116.
    MathSciNet     CrossRef

  22. P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), 1159-1245.
    MathSciNet

  23. P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027-1158.
    MathSciNet

  24. P. Ozsváth and Z. Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615-639.
    MathSciNet     CrossRef

  25. J. Rasmussen, Khovanov homology and the slice genus, preprint,
    math.GT/0402131.

  26. A. Tamulis, Knots of ten or fewer crossings of algebraic order 2, J. Knot Theory Ramifications 11 (2002), 211-222.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page