Glasnik Matematicki, Vol. 42, No.1 (2007), 213-236.

QUASI-HOMOMORPHISMS ON MAPPING CLASS GROUPS

Mladen Bestvina and Koji Fujiwara

Department of Mathematics, University of Utah, 155 South 1400 East, JWB 233, Salt Lake City, Utah 84112-0090, USA
e-mail: bestvina@math.utah.edu

Graduate School of Information Science, Tohoku University, Sendai, 980-8579, Japan
e-mail: fujiwara@math.is.tohoku.ac.jp


Abstract.   We refine the construction of quasi-homomorphisms on mapping class groups. It is useful to know that there are unbounded quasi-homomorphisms which are bounded when restricted to particular subgroups since then one deduces that the mapping class group is not boundedly generated by these subgroups. In this note we enlarge the class of such subgroups. The generalization is motivated by considerations in first order theory of free groups.

2000 Mathematics Subject Classification.   57M07, 57S30.

Key words and phrases.   Mapping class group, quasi-homomorphism, bounded cohomology, pseudo-Anosov.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.15


References:

  1. C. Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991), 109-150.
    MathSciNet

  2. M. Bestvina and M. Feighn, in preparation.

  3. M. Bestvina and K. Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69-89.
    MathSciNet     CrossRef

  4. B. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006), 105-129.
    MathSciNet     CrossRef

  5. B. Bowditch, Tight geodesics in the curve complex, preprint.

  6. M. J. Dunwoody and M. E. Sageev, JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999), 25-44.
    MathSciNet     CrossRef

  7. B. Farb, A. Lubotzky and Y. Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001), 581-597.
    MathSciNet     CrossRef

  8. K. Fujiwara and P. Papasoglu, JSJ-decompositions of finitely presented groups and complexes of groups, Geom. Funct. Anal. 16 (2006), 70-125.
    MathSciNet     CrossRef

  9. K. Fujiwara, The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. (3) 76 (1998), 70-94.
    MathSciNet     CrossRef

  10. W. J. Harvey, Boundary structure of the modular group, in: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, 1981, 245-251.
    MathSciNet

  11. J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), 215-249.
    MathSciNet     CrossRef

  12. N. V. Ivanov, Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987), 49-91 (English translation: Russian Math Surveys 42 (1987), 55-107).
    MathSciNet

  13. O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998), 472-516.
    MathSciNet     CrossRef

  14. O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. {II}. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998), 517-570.
    MathSciNet     CrossRef

  15. M. Korkmaz, Mapping class groups of nonorientable surfaces, Geom. Dedicata 89 (2002), 109-133.
    MathSciNet     CrossRef

  16. W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778.
    MathSciNet

  17. H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), 103-149.
    MathSciNet     CrossRef

  18. H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), 902-974.
    MathSciNet     CrossRef

  19. H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv. 68 (1993), 289-307.
    MathSciNet     CrossRef

  20. K. Rafi and S. Schleimer, Covers and curve complex, arXiv,
    math.GT/0701719.

  21. Z. Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31-105.
    MathSciNet

  22. C. Series, The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), 69-80.
    MathSciNet     CrossRef

  23. M. Stukow, Dehn twists on nonorientable surfaces, arXiv,
    math.GT/0601137.

  24. W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431.
    MathSciNet

Glasnik Matematicki Home Page