Glasnik Matematicki, Vol. 42, No.1 (2007), 213-236.
QUASI-HOMOMORPHISMS ON MAPPING CLASS GROUPS
Mladen Bestvina and Koji Fujiwara
Department of Mathematics, University of Utah, 155 South 1400 East, JWB 233,
Salt Lake City, Utah 84112-0090, USA
e-mail: bestvina@math.utah.edu
Graduate School of Information Science, Tohoku University, Sendai, 980-8579,
Japan
e-mail: fujiwara@math.is.tohoku.ac.jp
Abstract. We refine the construction of quasi-homomorphisms on
mapping class groups. It is useful to know that there are
unbounded quasi-homomorphisms which are bounded when restricted to
particular subgroups since then one deduces that the mapping class
group is not boundedly generated by these subgroups. In this note
we enlarge the class of such subgroups. The generalization is
motivated by considerations in first order theory of free groups.
2000 Mathematics Subject Classification.
57M07, 57S30.
Key words and phrases. Mapping class group, quasi-homomorphism, bounded
cohomology, pseudo-Anosov.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.1.15
References:
- C. Bavard,
Longueur stable des commutateurs, Enseign. Math.
(2) 37 (1991), 109-150.
MathSciNet
- M. Bestvina and M. Feighn,
in preparation.
- M. Bestvina and K. Fujiwara,
Bounded cohomology of subgroups of mapping class groups,
Geom. Topol. 6 (2002), 69-89.
MathSciNet
CrossRef
- B. Bowditch,
Intersection numbers and the hyperbolicity of
the curve complex, J. Reine Angew. Math. 598 (2006),
105-129.
MathSciNet
CrossRef
- B. Bowditch,
Tight geodesics in the curve complex,
preprint.
- M. J. Dunwoody and M. E. Sageev,
JSJ-splittings for
finitely presented groups over slender groups,
Invent. Math. 135 (1999), 25-44.
MathSciNet
CrossRef
- B. Farb, A. Lubotzky and Y. Minsky,
Rank-1 phenomena for
mapping class groups, Duke Math. J. 106 (2001), 581-597.
MathSciNet
CrossRef
- K. Fujiwara and P. Papasoglu,
JSJ-decompositions of
finitely presented groups and complexes of groups,
Geom. Funct. Anal. 16 (2006), 70-125.
MathSciNet
CrossRef
- K. Fujiwara,
The second bounded cohomology of a group acting
on a Gromov-hyperbolic space,
Proc. London Math. Soc. (3) 76 (1998), 70-94.
MathSciNet
CrossRef
- W. J. Harvey,
Boundary structure of the
modular group, in: Proceedings of the 1978 Stony Brook Conference
(State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math.
Stud. 97, Princeton Univ. Press, Princeton, 1981,
245-251.
MathSciNet
- J. Harer,
Stability of the homology of
the mapping class groups of orientable surfaces,
Ann. of Math. (2) 121 (1985), 215-249.
MathSciNet
CrossRef
- N. V. Ivanov,
Complexes of curves and Teichmüller modular
groups, Uspekhi Mat. Nauk 42 (1987), 49-91 (English
translation: Russian Math Surveys 42 (1987), 55-107).
MathSciNet
- O. Kharlampovich and A. Myasnikov,
Irreducible affine varieties over a
free group. I. Irreducibility of quadratic equations and
Nullstellensatz, J. Algebra 200 (1998), 472-516.
MathSciNet
CrossRef
- O. Kharlampovich and A. Myasnikov,
Irreducible affine varieties over a free group. {II}. Systems
in triangular quasi-quadratic form and description of residually free
groups, J. Algebra 200 (1998), 517-570.
MathSciNet
CrossRef
- M. Korkmaz,
Mapping class groups of nonorientable surfaces,
Geom. Dedicata 89 (2002), 109-133.
MathSciNet
CrossRef
- W. B. R. Lickorish,
A finite set of
generators for the homeotopy group of a 2-manifold,
Proc. Cambridge Philos. Soc. 60 (1964), 769-778.
MathSciNet
- H. A. Masur and Y. N. Minsky,
Geometry of the complex of
curves. I. Hyperbolicity,
Invent. Math. 138 (1999), 103-149.
MathSciNet
CrossRef
- H. A. Masur and Y. N. Minsky,
Geometry of the complex of
curves. II. Hierarchical structure,
Geom. Funct. Anal. 10 (2000), 902-974.
MathSciNet
CrossRef
- H. Masur and J. Smillie,
Quadratic differentials with
prescribed singularities and pseudo-Anosov diffeomorphisms,
Comment. Math. Helv. 68 (1993), 289-307.
MathSciNet
CrossRef
- K. Rafi and S. Schleimer,
Covers and curve complex, arXiv,
math.GT/0701719.
- Z. Sela,
Diophantine geometry over groups. I.
Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études
Sci. 93 (2001), 31-105.
MathSciNet
- C. Series,
The modular surface and continued fractions,
J. London Math. Soc. (2) 31 (1985), 69-80.
MathSciNet
CrossRef
- M. Stukow,
Dehn twists on nonorientable surfaces, arXiv,
math.GT/0601137.
- W. P. Thurston,
On the geometry and dynamics of
diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.)
19 (1988), 417-431.
MathSciNet
Glasnik Matematicki Home Page