Glasnik Matematicki, Vol. 42, No.1 (2007), 145-187.
THE COARSE SHAPE
Nikola Koceić Bilan and Nikica Uglešić
Department of Mathematics, University of Split,
Teslina 12/III, 21000 Split, Croatia
e-mail: koceic@pmfst.hr
23287 Veli Rat, Dugi Otok, Croatia
e-mail: nuglesic@unizd.hr
Abstract. Given a category
C, a certain category
pro*-C
on inverse systems in C
is constructed, such that the usual
pro-category pro-C
may be considered as a subcategory of
pro*-C.
By simulating the (abstract) shape
category construction,
Sh(C,
D), an
(abstract) coarse shape category
Sh*(C,
D) is obtained. An
appropriate functor of the shape category to the coarse shape
category
exists. In the case of topological spaces,
C = HTop and
D = HPol or
D = HANR,
he corresponding realizing category for
Sh* is pro*-HPol or
pro*-HANR
respectively. Concerning an operative characterization of a coarse
shape isomorphism, a full analogue of the well known Morita lemma
is proved, while in the case of inverse sequences, a useful
sufficient condition is established. It is
proved by examples that for
C = Grp
(groups) and C = HTop,
the classification of inverse systems in
pro*-C is
strictly coarser than in
pro-C.
Therefore, the underlying coarse shape theory for topological spaces makes
sense.
2000 Mathematics Subject Classification.
55P55, 18A32.
Key words and phrases. Topological space, compactum, polyhedron, ANR, category, homotopy,
shape, S*-equivalence.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.1.12
References:
- K. Borsuk,
Concerning homotopy properties of
compacta, Fund. Math. 62 (1968), 223-254.
MathSciNet
- K. Borsuk,
Theory of Shape, PWN-Polish Scientific Publishers,
Warszawa, 1975.
MathSciNet
- K. Borsuk,
Some quantitative properties of
shapes, Fund. Math. 93 (1976), 197-212.
MathSciNet
- D. Coram and P. F. Duval, Jr.,
Approximate fibrations,
Rocky Mountain J. Math. 7 (1977), 275-288.
MathSciNet
- H. Freudenthal,
Entwicklungen von Räumen
und ihren Gruppen, Compositio Math. 4 (1933), 145-234.
Numdam
- K. R. Goodearl and T. B. Rushing,
Direct limit groups and the Keesling-Mardesic shape fibration,
Pacific J. Math. 86 (1980), 471-476.
MathSciNet
- H. Herrlich and G. E. Strecker,
Category Theory: an Introduction, Allyn and Bacon Inc., Boston,
1973.
MathSciNet
- A. Kadlof, N. Koceic Bilan and N. Uglesic,
Borsuk's quasi-equivalence is not transitive, submitted.
- J. Keesling and S. Mardesic,
A shape fibration with fibers of different shape,
Pacific J. Math. 84 (1979), 319-331.
MathSciNet
- S. Mardesic,
Shapes for topological spaces, General Topology Appl. 3 (1973), 265-282.
MathSciNet
CrossRef
- S. Mardesic,
Comparing fibres in a
shape fibration, Glas. Mat. Ser. III 13(33) (1978), 317-333.
MathSciNet
- S. Mardesic,
Inverse limits and resolutions, in: Shape theory and geometric topology (Dubrovnik,
1981), Lecture Notes in Math. 870, Springer, Berlin-New
York, 1981, 239-252.
MathSciNet
- S. Mardesic and T. B. Rushing,
Shape fibrations I, General Topology Appl. 9 (1978), 193-215.
MathSciNet
CrossRef
- S. Mardesic and J. Segal,
Shapes of compacta and ANR-systems, Fund. Math.
72 (1971), 41-59.
MathSciNet
- S. Mardesic and J. Segal, Shape Theory,
North-Holland Publishing Co., Amsterdam-New York-Oxford 1982.
MathSciNet
- S. Mardesic and N. Uglesic,
A category whose isomorphisms induce an equivalence relation coarser
than shape, Topology Appl. 153 (2005), 448-463.
MathSciNet
CrossRef
- K. Morita,
The Hurewicz and the Whitehead
theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974), 246-258.
MathSciNet
- K. Morita,
On shapes of topological spaces,
Fund. Math. 86 (1975), 251-259.
MathSciNet
- W. Scheffer,
Maps between topological groups
that are homotopic to homomorphisms,
Proc. Amer. Math. Soc. 33 (1972), 562-567.
MathSciNet
CrossRef
- N. Uglesic,
A note on the Borsuk quasi-equivalence, submitted.
- N. Uglesic and B. Cervar,
The Sn-equivalence of compacta, submitted.
- N. Uglesic and B. Cervar,
A subshape spectrum for compacta,
Glas. Mat. Ser. III 40(60) (2005), 347-384.
MathSciNet
Glasnik Matematicki Home Page