Glasnik Matematicki, Vol. 42, No.1 (2007), 145-187.

THE COARSE SHAPE

Nikola Koceić Bilan and Nikica Uglešić

Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia
e-mail: koceic@pmfst.hr

23287 Veli Rat, Dugi Otok, Croatia
e-mail: nuglesic@unizd.hr


Abstract.   Given a category C, a certain category pro*-C on inverse systems in C is constructed, such that the usual pro-category pro-C may be considered as a subcategory of pro*-C. By simulating the (abstract) shape category construction, Sh(C, D), an (abstract) coarse shape category Sh*(C, D) is obtained. An appropriate functor of the shape category to the coarse shape category exists. In the case of topological spaces, C = HTop and D = HPol or D = HANR, he corresponding realizing category for Sh* is pro*-HPol or pro*-HANR respectively. Concerning an operative characterization of a coarse shape isomorphism, a full analogue of the well known Morita lemma is proved, while in the case of inverse sequences, a useful sufficient condition is established. It is proved by examples that for C = Grp (groups) and C = HTop, the classification of inverse systems in pro*-C is strictly coarser than in pro-C. Therefore, the underlying coarse shape theory for topological spaces makes sense.

2000 Mathematics Subject Classification.   55P55, 18A32.

Key words and phrases.   Topological space, compactum, polyhedron, ANR, category, homotopy, shape, S*-equivalence.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.12


References:

  1. K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254.
    MathSciNet

  2. K. Borsuk, Theory of Shape, PWN-Polish Scientific Publishers, Warszawa, 1975.
    MathSciNet

  3. K. Borsuk, Some quantitative properties of shapes, Fund. Math. 93 (1976), 197-212.
    MathSciNet

  4. D. Coram and P. F. Duval, Jr., Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288.
    MathSciNet

  5. H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compositio Math. 4 (1933), 145-234.
    Numdam

  6. K. R. Goodearl and T. B. Rushing, Direct limit groups and the Keesling-Mardesic shape fibration, Pacific J. Math. 86 (1980), 471-476.
    MathSciNet

  7. H. Herrlich and G. E. Strecker, Category Theory: an Introduction, Allyn and Bacon Inc., Boston, 1973.
    MathSciNet

  8. A. Kadlof, N. Koceic Bilan and N. Uglesic, Borsuk's quasi-equivalence is not transitive, submitted.

  9. J. Keesling and S. Mardesic, A shape fibration with fibers of different shape, Pacific J. Math. 84 (1979), 319-331.
    MathSciNet

  10. S. Mardesic, Shapes for topological spaces, General Topology Appl. 3 (1973), 265-282.
    MathSciNet     CrossRef

  11. S. Mardesic, Comparing fibres in a shape fibration, Glas. Mat. Ser. III 13(33) (1978), 317-333.
    MathSciNet

  12. S. Mardesic, Inverse limits and resolutions, in: Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math. 870, Springer, Berlin-New York, 1981, 239-252.
    MathSciNet

  13. S. Mardesic and T. B. Rushing, Shape fibrations I, General Topology Appl. 9 (1978), 193-215.
    MathSciNet     CrossRef

  14. S. Mardesic and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), 41-59.
    MathSciNet

  15. S. Mardesic and J. Segal, Shape Theory, North-Holland Publishing Co., Amsterdam-New York-Oxford 1982.
    MathSciNet

  16. S. Mardesic and N. Uglesic, A category whose isomorphisms induce an equivalence relation coarser than shape, Topology Appl. 153 (2005), 448-463.
    MathSciNet     CrossRef

  17. K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974), 246-258.
    MathSciNet

  18. K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
    MathSciNet

  19. W. Scheffer, Maps between topological groups that are homotopic to homomorphisms, Proc. Amer. Math. Soc. 33 (1972), 562-567.
    MathSciNet     CrossRef

  20. N. Uglesic, A note on the Borsuk quasi-equivalence, submitted.

  21. N. Uglesic and B. Cervar, The Sn-equivalence of compacta, submitted.

  22. N. Uglesic and B. Cervar, A subshape spectrum for compacta, Glas. Mat. Ser. III 40(60) (2005), 347-384.
    MathSciNet

Glasnik Matematicki Home Page