Glasnik Matematicki, Vol. 42, No.1 (2007), 109-116.

A COHOMOLOGICAL CHARACTERIZATION OF SHAPE DIMENSION FOR SOME CLASS OF SPACES

Jack Segal and Stanisaw Spiez

Department of Mathematics, University of Washington, Seattle, WA 98195, USA
e-mail: segal@math.washington.edu

Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, P.O.B. 137, 00-950 Warszawa, Poland
e-mail: s.spiez@impan.gov.pl


Abstract.   It is known that if X is a metric compact space (compactum) with finite shape dimension sd(X) ≠ 2, then sd(X) is equal to the generalized coefficient of cyclicity c[X], equivalently sd(X × S1) = sd(X) + 1. In general, these equalities do not hold in the case of compacta with sd(X) = 2. In this paper we prove that if X is a regularly 1-movable connected pointed space with sd(X) = 2, then c[X] = 2.

2000 Mathematics Subject Classification.   54F45, 55P55.

Key words and phrases.   Shape dimension, regularly movable, cohomological dimension, Stallings-Swan theorem.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.09


References:

  1. K. Borsuk, Theory of Shape, PWN--Polish Scientific Publishers, Warszawa, 1975.
    MathSciNet

  2. J. Dydak, The Whitehead and Smale theorems in shape theory, Dissertationes Math. 156 (1979), 1-51.
    MathSciNet

  3. S. Mardesic and J. Segal, Shape Theory, North-Holland Publishing Co., Amsterdam-New York-Oxford 1982.
    MathSciNet

  4. S. Nowak, Algebraic theory of fundamental dimension, Dissertationes Math. 187 (1981), 1-59.
    MathSciNet

  5. S. Nowak and S. Spiez, Some properties of deformation dimension, in: Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math. 870, Springer, Berlin-New York, 1981, 93-104.
    MathSciNet

  6. S. Nowak and S. Spiez, Remarks on deformability, Fund. Math. 125 (1985), 95-103.
    MathSciNet

  7. S. Spiez, An example of a continuum X with Fd(X × S1) = Fd(X) = 2, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 923-927.
    MathSciNet

  8. J. R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312-344.
    MathSciNet     CrossRef

  9. R. G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585-610.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page