Glasnik Matematicki, Vol. 42, No.1 (2007), 109-116.
A COHOMOLOGICAL CHARACTERIZATION OF SHAPE DIMENSION
FOR SOME CLASS OF SPACES
Jack Segal and Stanisaw Spiez
Department of Mathematics, University of Washington, Seattle, WA 98195, USA
e-mail: segal@math.washington.edu
Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, P.O.B. 137,
00-950 Warszawa, Poland
e-mail: s.spiez@impan.gov.pl
Abstract. It is known that if X is a metric compact space
(compactum) with finite shape dimension sd(X) ≠ 2, then
sd(X) is equal to the generalized coefficient of cyclicity
c[X], equivalently
sd(X × S1) = sd(X) + 1. In general,
these equalities do not hold in the case of compacta with
sd(X) = 2. In this paper we prove that if X is a regularly
1-movable connected pointed space with sd(X) = 2, then
c[X] = 2.
2000 Mathematics Subject Classification.
54F45, 55P55.
Key words and phrases. Shape dimension, regularly movable, cohomological dimension,
Stallings-Swan theorem.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.1.09
References:
- K. Borsuk,
Theory of Shape,
PWN--Polish Scientific Publishers, Warszawa, 1975.
MathSciNet
- J. Dydak,
The Whitehead and Smale theorems in
shape theory, Dissertationes Math. 156 (1979), 1-51.
MathSciNet
- S. Mardesic and J. Segal, Shape Theory,
North-Holland Publishing Co., Amsterdam-New York-Oxford 1982.
MathSciNet
- S. Nowak,
Algebraic theory of fundamental dimension,
Dissertationes Math. 187 (1981), 1-59.
MathSciNet
- S. Nowak and S. Spiez,
Some properties
of deformation dimension, in: Shape theory and geometric topology
(Dubrovnik, 1981), Lecture Notes in Math. 870, Springer,
Berlin-New York, 1981, 93-104.
MathSciNet
- S. Nowak and S. Spiez, Remarks on deformability,
Fund. Math. 125 (1985), 95-103.
MathSciNet
- S. Spiez,
An example of a continuum X
with Fd(X × S1) = Fd(X) = 2,
Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 923-927.
MathSciNet
- J. R. Stallings, On torsion-free groups
with infinitely many ends, Ann. of Math. (2) 88 (1968), 312-344.
MathSciNet
CrossRef
- R. G. Swan, Groups of cohomological dimension one,
J. Algebra 12 (1969), 585-610.
MathSciNet
CrossRef
Glasnik Matematicki Home Page