Glasnik Matematicki, Vol. 42, No.1 (2007), 95-108.
CLOSED EMBEDDINGS INTO LIPSCOMB'S UNIVERSAL SPACE
Ivan Ivanšić and Uroš Milutinović
FER, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
e-mail: ivan.ivansic@fer.hr
FNM, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
e-mail: uros.milutinovic@uni-mb.si
Abstract. Let
J(τ)
be Lipscomb's one-dimensional space and
Ln(τ) = {x
J(τ)n+1
| at least one coordinate of x is irrational}
J(τ)n+1
Lipscomb's n-dimensional
universal space of weight
τ ≥ אo.
In this paper we
prove that if X is a complete metrizable space and
dim X ≤ n,
w X ≤ τ, then there is a closed embedding of X into
Ln(τ). Furthermore, any map
f : X →
J(τ)n+1
can be approximated arbitrarily close by a closed embedding
ψ : X →
Ln(τ).
Also, relative and pointed versions are obtained. In the
separable case an analogous result is obtained, in which the
classic triangular Sierpinski curve (homeomorphic to
J(3))
is used instead of
J(אo).
2000 Mathematics Subject Classification.
54F45.
Key words and phrases. Covering dimension, embedding, closed embedding,
universal space, generalized Sierpinski curve, Lipscomb's
universal space, extension, complete metric space.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.1.08
References:
- R. Engelking, Dimension Theory, PWN-Polish Scientific Publishers,
Warszawa and North-Holland Publishing Co., Amsterdam-Oxford-New
York, 1978.
MathSciNet
- R. Engelking, General Topology, Revised and completed edition,
Heldermann Verlag, Berlin, 1989.
MathSciNet
- Y. Hattori,
A note on universal spaces for finite
dimensional complete metric spaces,
Glas. Mat. Ser. III 24(44) (1989), 139-147.
MathSciNet
- I. Ivansic and U. Milutinovic,
A universal separable metric space based on the triangular
Sierpinski curve, Topology Appl. 120 (2002), 237-271.
MathSciNet
CrossRef
- I. Ivansic and U. Milutinovic,
Relative embeddability into Lipscomb's 0-dimensional universal space,
Houston J. Math. 29 (2003), 1001-1012.
MathSciNet
- I. Ivansic and U. Milutinovic,
The pointed version
of Lipscomb's embedding theorem, Houston J. Math. 31
(2005), 173-192.
MathSciNet
- S. L. Lipscomb,
A universal one-dimensional metric space,
in: TOPO 72 - General Topology and its Applications (Proc. Second
Pittsburgh Internat. Conf., Pittsburgh, 1972.), Lecture Notes in
Math. 378, Springer, Berlin, 1974., 248-257.
MathSciNet
- S. L. Lipscomb,
On imbedding finite-dimensional metric
spaces, Trans. Amer. Math. Soc. 211 (1975),
143-160.
MathSciNet
CrossRef
- U. Milutinovic,
Completeness of the Lipscomb universal
space, Glas. Mat. Ser. III 27(47) (1992), 343-364.
MathSciNet
- U. Milutinovic,
Contributions to the theory of universal
spaces, Ph. D. Thesis (in Croatian), University of Zagreb, 1993.
- U. Milutinovic,
Approximation of maps into Lipscomb's
space by embeddings, Houston J. Math. 32 (2006),
143-159.
MathSciNet
- A. Nagórko, Characterization and topological rigidity of
Nöbeling manifolds, Ph. D. Thesis, Warsaw University, 2006,
http://arxiv.org/abs/math/0602574.
- W. Olszewski and L. Piantkiewicz,
Closed embeddings of
completely metrizable spaces into universal spaces,
Glas. Mat. Ser. III 27(47) (1992), 175-181.
MathSciNet
- J. C. Perry,
Lipscomb's universal space is the attractor of an infinite
iterated function system,
Proc. Amer. Math. Soc. 124 (1996), 2479-2489.
MathSciNet
CrossRef
- K. Tsuda,
A note on closed embeddings of
finite-dimensional metric spaces,
Bull. London Math. Soc. 17 (1985), 275-278.
MathSciNet
CrossRef
- K. Tsuda,
A note on closed embeddings of
finite-dimensional metric spaces II,
Bull. Polish Acad. Sci. Math. 33 (1985), 541-546.
MathSciNet
- A. Wasko,
Spaces universal under closed embeddings for
finite-dimensional complete metric spaces,
Bull. London Math. Soc. 18 (1986), 293-298.
MathSciNet
CrossRef
Glasnik Matematicki Home Page