Glasnik Matematicki, Vol. 42, No.1 (2007), 89-94.
ON THE FUNDAMENTAL GROUP OF R3 MODULO THE
CASE-CHAMBERLIN CONTINUUM
Katsuya Eda, Umed H. Karimov and Dušan Repovš
School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
e-mail: eda@logic.info.waseda.ac.jp
Institute of Mathematics, Academy of Sciences of Tajikistan, Ul. Ainy 299A,
Dushanbe 734063, Tajikistan
e-mail: umed-karimov@mail.ru
Institute of Mathematics, Physics and Mechanics and Faculty
of Education, University of Ljubljana, P.O.Box 2964, Ljubljana
1001, Slovenia
e-mail: dusan.repovs@guest.arnes.si
Abstract. It has been known for a long time that the fundamental
group of the quotient of R3 by the
Case-Chamberlin continuum is nontrivial. In the present paper we
prove that this group is in fact, uncountable.
2000 Mathematics Subject Classification.
54F15, 55Q52, 57M05, 54B15, 54F35, 54G15.
Key words and phrases. Case-Chamberlin continuum, quotient space, fundamental
group, lower central series, weight, commutator.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.1.07
References:
- S. Armentrout, unpublished manuscript.
- K. Borsuk,
On the homotopy types of some decomposition
spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.
Phys. 18 (1970), 235-239.
MathSciNet
- J. H. Case and R. E. Chamberlin,
Characterization of tree-like continua,
Pacific J. Math. 10 (1960), 73-84.
MathSciNet
- W. Hurewicz and H. Wallman, Dimension Theory, Princeton
University Press, Princeton, 1941.
MathSciNet
- U. H. Karimov and D. Repovs,
On suspensions of noncontractible compacta of trivial shape,
Proc. Amer. Math. Soc. 127 (1999), 627-632.
MathSciNet
CrossRef
- U. H. Karimov and D. Repovs,
On nonacyclicity of the quotient space of R3 by the solenoid,
Topology Appl. 133 (2003), 65-68.
MathSciNet
CrossRef
- J. Krasinkiewicz,
On a method of constructing ANR-sets. An
application of inverse limits, Fund. Math. 92 (1976), 95-112.
MathSciNet
- R. C. Lyndon and P. E. Schupp,
Combinatorial Group Theory,
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89,
Springer-Verlag, Berlin-New York, 1977.
MathSciNet
- W. Magnus, A. Karras and D. Solitar,
Combinatorial Group Theory,
Dover Publications, Inc., New York, 1976.
MathSciNet
- N. Shrikhande,
Homotopy properties of decomposition spaces,
Fund. Math. 116 (1983), 119-124.
MathSciNet
- L. Siebenmann,
Chapman's classification of shapes: a proof
using collapsing, Manuscripta Math. 16 (1975), 373-384.
MathSciNet
CrossRef
Glasnik Matematicki Home Page