Glasnik Matematicki, Vol. 42, No.1 (2007), 69-82.

HOMOTOPY CHARACTERIZATION OF G-ANR'S

Natella Antonyan, Sergey A. Antonyan and Alejandra Soria-Pérez

Departamento de Matemáticas, Division de Ingenieria y Arquitectura, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, 14380 México Distrito Federal, México
e-mail: nantonya@itesm.mx

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México Distrito Federal, México
e-mail: antonyan@servidor.unam.mx

Escuela de Matemáticas, Universidad Juárez del Estado de Durango, 34120 Durango, Dgo., México
e-mail: ale_godel@hotmail.com


Abstract.   Let G be a compact Lie group. We prove that if each point x in X of a G-space X admits a Gx-invariant neighborhood U which is a Gx-ANE then X is a G-ANE, where Gx stands for the stabilizer of x. This result is further applied to give two equivariant homotopy characterizations of G-ANR's. One of them sounds as follows: a metrizable G-space Y is a G-ANR iff Y is locally G-contractible and every metrizable closed G-pair (X, A) has the G-equivariant homotopy extension property with respect to Y. In the same terms we also characterize G-ANR subsets of a given G-ANR space.

2000 Mathematics Subject Classification.   54C55, 55P91.

Key words and phrases.   G-ANR, G-homotopy, G-homotopy extension theorem, slice.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.05


References:

  1. S. A. Antonyan, Retracts in categories of G-spaces, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 15 (1980), 365-378; English translation in: Soviet J. Contemporary Math. Anal. 15 (1980), 30-43.
    MathSciNet

  2. S. A. Antonian, Equivariant embeddings into G-ARs, Glas. Mat. Ser. III 22(42) (1987), 503-533.
    MathSciNet

  3. S. Antonyan, E. Elfving, and A. Mata-Romero, Adjunction spaces and unions of G-ANE's, Topology Proc. 26 (2001/02), 1-28.
    MathSciNet

  4. S. A. Antonyan, Orbit spaces and unions of equivariant absolute neighborhood extensors, Topology Appl. 146/147 (2005) 289-315.
    MathSciNet     CrossRef

  5. S. A. Antonyan, Orbit spaces of proper equivariant absolute extensors, Topology Appl. 153 (2005), 698-709.
    MathSciNet     CrossRef

  6. K. Borsuk, Theory of Retracts, PWN-Polish Scientific Publishers, Warszawa, 1967.
    MathSciNet

  7. G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York-London, 1972.
    MathSciNet

  8. T. tom Dieck, Transformation Groups, Walter de Gruyter & Co., Berlin, 1987.
    MathSciNet

  9. O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951) 389-408.
    MathSciNet     CrossRef

  10. S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
    MathSciNet

  11. J. Jaworowski, Extension properties of G-maps, in: Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, 209-213.
    MathSciNet

  12. J. van Mill, Infinite-dimensional Topology. Prerequisites and Introduction, North Holland Publishing Co., Amsterdam-New York-Oxford-Tokyo, 1989.
    MathSciNet

  13. R. S. Palais, The classification of G-spaces, Mem. Amer. Math. Soc. 36, Providence, 1960.
    MathSciNet

  14. J. de Vries, Topics in the theory of topological transformation groups, in: Topological Structures II. Math. Centre Tracts 116, Math. Centrum, Amsterdam, 1979, 291-304.
    MathSciNet

Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.