Glasnik Matematicki, Vol. 42, No.1 (2007), 57-67.
ČEBYŠEV SETS IN HYPERSPACES OVER A MINKOWSKI SPACE
Agnieszka Bogdewicz, Robert Dawson and Maria Moszynska
Department of Mathematics, Warsaw University of Technology,
Pl. Politechniki 1, 00-661 Warszawa, Poland
e-mail: abogde@mini.pw.edu.pl
Department of Mathematics and Computing Science, Saint Mary's University,
Halifax, Nova Scotia, Canada
e-mail: rdawson@cs.stmarys.ca
Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warszawa,
Poland
e-mail: mariamos@mimuw.edu.pl
Abstract. In this paper we extend our previous results on Čebyšev
sets in hyperspaces over a Euclidean n-space to hyperspaces over
a Minkowski space.
2000 Mathematics Subject Classification.
41A52, 52A20, 46B99.
Key words and phrases. Convex body, strictly convex set, Čebyšev set,
relative Čebyšev set, Minkowski space.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.1.04
References:
- I. Barany,
On the minimal ring containing the boundary of a
convex body, Acta Sci. Math. (Szeged) 52 (1988), 93-100.
MathSciNet
- A. Bogdewicz and M. Moszynska,
Cebysev sets in the space
of convex bodies, Rend. Circ. Mat. Palermo (2), Suppl.
77 (2006), 19-39.
MathSciNet
- T. Bonnesen,
Über das isoperimetrische Defizit ebener Figuren,
Math. Ann. 91 (1924), 252-268.
MathSciNet
CrossRef
- D. Braess, Nonlinear Approximation Theory,
Springer-Verlag, Berlin, 1986.
MathSciNet
- R. J. MacG. Dawson and M. Moszynska,
Cebysev sets in
hyperspaces over R, Canad. J. Math., to appear.
- A. L. Garkavi,
On the Cebysev centre and convex hull
of a set, Uspekhi Mat. Nauk 19(6) (1964), 139-145, in
Russian.
MathSciNet
- M. Moszynska,
Remarks on the minimal rings of convex bodies,
Studia Sci. Math. Hungar. 35 (1999), 155-174.
MathSciNet
- M. Moszynska, Selected topics in convex geometry,
Birkhäuser Boston, Inc., Boston, 2006.
MathSciNet
- C. Peri,
On the minimal convex shell of a convex body,
Canad. Math. Bull. 36 (1993), 446-472.
MathSciNet
- C. Peri,
Minimal shells containing a convex surface in Minkowski
space, Manuscripta Math. 90 (1996), 333-342.
MathSciNet
CrossRef
- R. Schneider,
Pairs of convex bodies with unique joining metric
segment, Bull. Soc. Roy. Sci. Liège 50 (1981), 5-7.
MathSciNet
- R. Schneider, Convex Bodies: the Brunn-Minkowski Theory,
Cambridge University Press, Cambridge, 1993.
MathSciNet
- I. Singer, Best Approximation in Normed Linear Spaces by Elements
of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970.
MathSciNet
- A. C. Thompson, Minkowski Geometry, Cambridge University
Press, Cambridge, 1996.
MathSciNet
Glasnik Matematicki Home Page