Glasnik Matematicki, Vol. 42, No.1 (2007), 57-67.

ČEBYŠEV SETS IN HYPERSPACES OVER A MINKOWSKI SPACE

Agnieszka Bogdewicz, Robert Dawson and Maria Moszynska

Department of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
e-mail: abogde@mini.pw.edu.pl

Department of Mathematics and Computing Science, Saint Mary's University, Halifax, Nova Scotia, Canada
e-mail: rdawson@cs.stmarys.ca

Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland
e-mail: mariamos@mimuw.edu.pl


Abstract.   In this paper we extend our previous results on Čebyšev sets in hyperspaces over a Euclidean n-space to hyperspaces over a Minkowski space.

2000 Mathematics Subject Classification.   41A52, 52A20, 46B99.

Key words and phrases.   Convex body, strictly convex set, Čebyšev set, relative Čebyšev set, Minkowski space.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.04


References:

  1. I. Barany, On the minimal ring containing the boundary of a convex body, Acta Sci. Math. (Szeged) 52 (1988), 93-100.
    MathSciNet

  2. A. Bogdewicz and M. Moszynska, Cebysev sets in the space of convex bodies, Rend. Circ. Mat. Palermo (2), Suppl. 77 (2006), 19-39.
    MathSciNet

  3. T. Bonnesen, Über das isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), 252-268.
    MathSciNet     CrossRef

  4. D. Braess, Nonlinear Approximation Theory, Springer-Verlag, Berlin, 1986.
    MathSciNet

  5. R. J. MacG. Dawson and M. Moszynska, Cebysev sets in hyperspaces over R, Canad. J. Math., to appear.

  6. A. L. Garkavi, On the Cebysev centre and convex hull of a set, Uspekhi Mat. Nauk 19(6) (1964), 139-145, in Russian.
    MathSciNet

  7. M. Moszynska, Remarks on the minimal rings of convex bodies, Studia Sci. Math. Hungar. 35 (1999), 155-174.
    MathSciNet

  8. M. Moszynska, Selected topics in convex geometry, Birkhäuser Boston, Inc., Boston, 2006.
    MathSciNet

  9. C. Peri, On the minimal convex shell of a convex body, Canad. Math. Bull. 36 (1993), 446-472.
    MathSciNet

  10. C. Peri, Minimal shells containing a convex surface in Minkowski space, Manuscripta Math. 90 (1996), 333-342.
    MathSciNet     CrossRef

  11. R. Schneider, Pairs of convex bodies with unique joining metric segment, Bull. Soc. Roy. Sci. Liège 50 (1981), 5-7.
    MathSciNet

  12. R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993.
    MathSciNet

  13. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970.
    MathSciNet

  14. A. C. Thompson, Minkowski Geometry, Cambridge University Press, Cambridge, 1996.
    MathSciNet

Glasnik Matematicki Home Page