Glasnik Matematicki, Vol. 42, No.1 (2007), 3-18.
ON MORDELL-WEIL GROUPS OF ELLIPTIC CURVES INDUCED BY DIOPHANTINE TRIPLES
Andrej Dujella
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb,
Croatia
e-mail: duje@math.hr
Abstract. We study the possible structure of the groups of
rational points on elliptic curves of the form
y2 = (ax+1)(bx+1)(cx+1),
where a,b,c are non-zero rationals
such that the product of any two of them is one less than a square.
2000 Mathematics Subject Classification.
11G05.
Key words and phrases. Elliptic curves, rank, torsion group, Diophantine triple.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.1.01
References:
- A. O. L. Atkin and F. Morain,
Finding suitable curves for the elliptic curve method of
factorization, Math. Comp. 60 (1993), 399-405.
MathSciNet
CrossRef
- A. Baker and H. Davenport,
The equations 3x2-2=y2 and
8x2-7=z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
MathSciNet
- C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier,
The Computer Algebra System PARI - GP, Université Bordeaux I,
1999,
http://pari.math.u-bordeaux.fr/.
- W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system I: The user language,
J. Symbolic Comput. 24 (1997), 235-265.
MathSciNet
CrossRef
- T. D. Brooks, E. A. Fowler, K. C. Hastings, D. L. Hiance and M. A. Zimmerman,
Elliptic curves with torsion subgroup
Z/2Z × Z/2Z: does a
rank 4 curve exist?,
The Journal of the SUMSRI,
Summer 2006.
- Y. Bugeaud, A. Dujella and M. Mignotte,
On the family of Diophantine triples
{k-1, k+1, 16k3-4k},
Glasg. Math. J., to appear.
- G. Campbell,
Finding Elliptic Curves and Families of Elliptic Curves over
Q of Large Rank, Ph. D. Thesis, Rutgers University,
1999.
- G. Campbell and E. H. Goins,
Heron triangles, Diophantine problems and elliptic curves, preprint.
- I. Connell, APECS,
ftp://ftp.math.mcgill.ca/pub/apecs/.
- J. E. Cremona,
Algorithms for Modular Elliptic Curves,
Cambridge University Press, Cambridge, 1997.
MathSciNet
- L. E. Dickson,
History of the Theory of Numbers, Vol. II: Diophantine Analysis,
Chelsea Publishing Co., New York, 1966, 513-520.
MathSciNet
- Diophantus of Alexandria,
Arithmetics and the Book of Polygonal Numbers, (ed.
I. G. Bashmakova), Nauka, Moscow, 1974 (in Russian), 103-104, 232.
MathSciNet
- A. Dujella,
The problem of the extension of a parametric family of
Diophantine triples, Publ. Math. Debrecen 51 (1997),
311-322.
MathSciNet
- A. Dujella,
Diophantine triples and construction of high-rank elliptic
curves over Q with three non-trivial 2-torsion
points, Rocky Mountain J. Math. 30 (2000), 157-164.
MathSciNet
CrossRef
- A. Dujella,
Irregular Diophantine m-tuples and elliptic curves of high
rank, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 66-67.
MathSciNet
- A. Dujella,
A parametric family of elliptic curves, Acta Arith. 94 (2000), 87-101.
MathSciNet
- A. Dujella,
High rank elliptic curves with prescribed torsion,
http://web.math.hr/~duje/tors/tors.html
(2000-2007).
- A. Dujella,
Diophantine m-tuples and elliptic curves,
J. Théor. Nombres Bordeaux 13 (2001), 111-124.
MathSciNet
- A. Dujella,
An example of elliptic curve over Q with rank
equal to 15, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), 109-111.
MathSciNet
- A. Dujella,
There are only finitely many Diophantine quintuples,
J. Reine Angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- A. Dujella,
History of elliptic curves rank records,
http://web.math.hr/~duje/tors/rankhist.html (2006).
- A. Dujella and A. Pethö,
A generalization of a theorem of Baker and Davenport,
Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
MathSciNet
CrossRef
- A. Dujella and A. Pethö,
Integer points on a family of elliptic curves,
Publ. Math. Debrecen 56 (2000), 321-335.
MathSciNet
- N. D. Elkies,
Algorithmic Number Theory: Tables and Links,
http://www.math.harvard.edu/~elkies/compnt.html
(2002-2006).
- N. D. Elkies,
Z28 in E(Q), etc., Number Theory Listserver, May 2006.
- N. D. Elkies and N. F. Rogers,
Elliptic curves x3 + y3 = k of high rank,
Proceedings of ANTS-6 (ed. D. Buell), Lecture Notes in Comput. Sci. 3076 (2004), 184-193.
MathSciNet
CrossRef
- P. Fermat,
Observations sur Diophante, Oeuvres de Fermat, Vol. 1 (eds.
P. Tannery and C. Henry), 1891, 303.
- Y. Fujita,
The extensibility of Diophantine pairs {k-1, k+1},
J. Number Theory, to appear.
- P. Gibbs,
Some rational Diophantine sextuples,
Glas. Mat. Ser. III 41 (2006), 195-203.
MathSciNet
CrossRef
- P. Gibbs,
A generalised Stern-Brocot tree from regular Diophantine quadruples, preprint,
math.NT/9903035.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd edition,
Springer-Verlag, New York, 2004, Section D29, 310.
MathSciNet
- T. L. Heath,
Diophantus of Alexandria: A Study in the History of Greek Algebra,
Dover Publications, Inc., New York, 1964, 179-182.
MathSciNet
- D. Husemöller,
Elliptic Curves, Springer-Verlag, New York, 1987.
MathSciNet
- A. W. Knapp,
Elliptic Curves, Princeton University Press, Princeton, 1992.
MathSciNet
- L. Kulesz,
Families of elliptic curves of high rank with nontrivial
torsion group over Q, Acta Arith. 108 (2003),
339-356.
MathSciNet
- L. Kulesz and C. Stahlke,
Elliptic curves of high rank with nontrivial torsion group
over Q, Experiment. Math. 10 (2001),
475-480.
MathSciNet
- O. Lecacheux,
Personal communications, 2002.
- J.-F. Mestre,
Construction d'une courbe elliptique de rang ≥ 12,
C. R. Acad. Sci. Paris Ser. I Math. 295 (1982), 643-644.
MathSciNet
- K. Nagao,
An example of elliptic curve over Q with rank
≥ 20, Proc. Japan Acad. Ser. A Math. Sci. 69
(1993), 291-293.
MathSciNet
- R. Rathbun,
Personal communications, 2003--2006.
- N. F. Rogers,
Rank computations for the congruent number elliptic
curves, Experiment. Math. 9 (2000), 591-594.
MathSciNet
- T. Shioda,
On the Mordell - Weil lattices,
Comment. Math. Univ. St. Paul. 39 (1990), 211-240.
MathSciNet
- M. Waldschmidt,
Open Diophantine problems, Mosc. Math. J. 4 (2004), 245-305.
MathSciNet
Glasnik Matematicki Home Page