Glasnik Matematicki, Vol. 42, No.1 (2007), 3-18.

ON MORDELL-WEIL GROUPS OF ELLIPTIC CURVES INDUCED BY DIOPHANTINE TRIPLES

Andrej Dujella

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: duje@math.hr


Abstract.   We study the possible structure of the groups of rational points on elliptic curves of the form y2 = (ax+1)(bx+1)(cx+1), where a,b,c are non-zero rationals such that the product of any two of them is one less than a square.

2000 Mathematics Subject Classification.   11G05.

Key words and phrases.   Elliptic curves, rank, torsion group, Diophantine triple.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.01


References:

  1. A. O. L. Atkin and F. Morain, Finding suitable curves for the elliptic curve method of factorization, Math. Comp. 60 (1993), 399-405.
    MathSciNet     CrossRef

  2. A. Baker and H. Davenport, The equations 3x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
    MathSciNet

  3. C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, The Computer Algebra System PARI - GP, Université Bordeaux I, 1999,
    http://pari.math.u-bordeaux.fr/.

  4. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265.
    MathSciNet     CrossRef

  5. T. D. Brooks, E. A. Fowler, K. C. Hastings, D. L. Hiance and M. A. Zimmerman, Elliptic curves with torsion subgroup Z/2Z × Z/2Z: does a rank 4 curve exist?, The Journal of the SUMSRI, Summer 2006.

  6. Y. Bugeaud, A. Dujella and M. Mignotte, On the family of Diophantine triples {k-1, k+1, 16k3-4k}, Glasg. Math. J., to appear.

  7. G. Campbell, Finding Elliptic Curves and Families of Elliptic Curves over Q of Large Rank, Ph. D. Thesis, Rutgers University, 1999.

  8. G. Campbell and E. H. Goins, Heron triangles, Diophantine problems and elliptic curves, preprint.

  9. I. Connell, APECS,
    ftp://ftp.math.mcgill.ca/pub/apecs/.

  10. J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, Cambridge, 1997.
    MathSciNet

  11. L. E. Dickson, History of the Theory of Numbers, Vol. II: Diophantine Analysis, Chelsea Publishing Co., New York, 1966, 513-520.
    MathSciNet

  12. Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, (ed. I. G. Bashmakova), Nauka, Moscow, 1974 (in Russian), 103-104, 232.
    MathSciNet

  13. A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.
    MathSciNet

  14. A. Dujella, Diophantine triples and construction of high-rank elliptic curves over Q with three non-trivial 2-torsion points, Rocky Mountain J. Math. 30 (2000), 157-164.
    MathSciNet     CrossRef

  15. A. Dujella, Irregular Diophantine m-tuples and elliptic curves of high rank, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 66-67.
    MathSciNet

  16. A. Dujella, A parametric family of elliptic curves, Acta Arith. 94 (2000), 87-101.
    MathSciNet

  17. A. Dujella, High rank elliptic curves with prescribed torsion,
    http://web.math.hr/~duje/tors/tors.html (2000-2007).

  18. A. Dujella, Diophantine m-tuples and elliptic curves, J. Théor. Nombres Bordeaux 13 (2001), 111-124.
    MathSciNet

  19. A. Dujella, An example of elliptic curve over Q with rank equal to 15, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), 109-111.
    MathSciNet

  20. A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  21. A. Dujella, History of elliptic curves rank records,
    http://web.math.hr/~duje/tors/rankhist.html (2006).

  22. A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
    MathSciNet     CrossRef

  23. A. Dujella and A. Pethö, Integer points on a family of elliptic curves, Publ. Math. Debrecen 56 (2000), 321-335.
    MathSciNet

  24. N. D. Elkies, Algorithmic Number Theory: Tables and Links,
    http://www.math.harvard.edu/~elkies/compnt.html (2002-2006).

  25. N. D. Elkies, Z28 in E(Q), etc., Number Theory Listserver, May 2006.

  26. N. D. Elkies and N. F. Rogers, Elliptic curves x3 + y3 = k of high rank, Proceedings of ANTS-6 (ed. D. Buell), Lecture Notes in Comput. Sci. 3076 (2004), 184-193.
    MathSciNet     CrossRef

  27. P. Fermat, Observations sur Diophante, Oeuvres de Fermat, Vol. 1 (eds. P. Tannery and C. Henry), 1891, 303.

  28. Y. Fujita, The extensibility of Diophantine pairs {k-1, k+1}, J. Number Theory, to appear.

  29. P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41 (2006), 195-203.
    MathSciNet     CrossRef

  30. P. Gibbs, A generalised Stern-Brocot tree from regular Diophantine quadruples, preprint,
    math.NT/9903035.

  31. R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer-Verlag, New York, 2004, Section D29, 310.
    MathSciNet

  32. T. L. Heath, Diophantus of Alexandria: A Study in the History of Greek Algebra, Dover Publications, Inc., New York, 1964, 179-182.
    MathSciNet

  33. D. Husemöller, Elliptic Curves, Springer-Verlag, New York, 1987.
    MathSciNet

  34. A. W. Knapp, Elliptic Curves, Princeton University Press, Princeton, 1992.
    MathSciNet

  35. L. Kulesz, Families of elliptic curves of high rank with nontrivial torsion group over Q, Acta Arith. 108 (2003), 339-356.
    MathSciNet

  36. L. Kulesz and C. Stahlke, Elliptic curves of high rank with nontrivial torsion group over Q, Experiment. Math. 10 (2001), 475-480.
    MathSciNet

  37. O. Lecacheux, Personal communications, 2002.

  38. J.-F. Mestre, Construction d'une courbe elliptique de rang ≥ 12, C. R. Acad. Sci. Paris Ser. I Math. 295 (1982), 643-644.
    MathSciNet

  39. K. Nagao, An example of elliptic curve over Q with rank ≥ 20, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.
    MathSciNet

  40. R. Rathbun, Personal communications, 2003--2006.

  41. N. F. Rogers, Rank computations for the congruent number elliptic curves, Experiment. Math. 9 (2000), 591-594.
    MathSciNet

  42. T. Shioda, On the Mordell - Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), 211-240.
    MathSciNet

  43. M. Waldschmidt, Open Diophantine problems, Mosc. Math. J. 4 (2004), 245-305.
    MathSciNet

Glasnik Matematicki Home Page