Glasnik Matematicki, Vol. 41, No.2 (2006), 329-334.

LORENTZIAN MATRIX MULTIPLICATION AND THE MOTIONS ON LORENTZIAN PLANE

Halit Gündogan and Osman Kecilioglu

Department of Mathematics, Kirikkale University, Kirikkale, Turkey
e-mail: hagundogan@hotmail.com
e-mail: kecilioglu@kku.edu.tr


Abstract.   In this paper, a new matrix multiplication is defined in Rnm × Rpn by using Lorentzian inner product in Rn, where Rnm is set of matrices of m rows and n columns. With this multiplication it has been shown that Rnn is an algebra with unit. By means of orthogonal matrices with respect to this multiplication, coordinate transformations are defined on n-dimensional Lorentz space Ln. As a special case, motions on L2 Lorentz plane are obtained.

2000 Mathematics Subject Classification.   51M05, 53A17.

Key words and phrases.   Lorentz space, rotation, reflection.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.2.15


References:

  1. G. S. Birman and K. Nomizu, Trigonometry in Lorentzian geometry, Amer. Math. Monthly 91 (1984), 543-549.
    MathSciNet     CrossRef

  2. G. S. Birman and K. Nomizu, The Gauss-Bonnet theorem for 2-dimensional spacetimes, Michigan Math. J. 31 (1984), 77-81.
    MathSciNet     CrossRef

  3. A. A. Ergin, On the 1-parameter Lorentzian motions, Comm. Fac. Sci. Univ. Ankara Ser. A1 Math. Statist. 40 (1991), 59-66.
    MathSciNet

  4. S. Lang, Linear Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1971.
    MathSciNet

  5. J. M. McCarthy, An Introduction to Theoretical Kinematics, MIT Press, Cambridge, 1990.
    MathSciNet

  6. B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, Inc., New York, 1983.
    MathSciNet

  7. J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994.
    MathSciNet

Glasnik Matematicki Home Page