Glasnik Matematicki, Vol. 41, No.2 (2006), 329-334.
LORENTZIAN MATRIX MULTIPLICATION AND THE MOTIONS ON LORENTZIAN PLANE
Halit Gündogan and Osman Kecilioglu
Department of Mathematics, Kirikkale University, Kirikkale, Turkey
e-mail: hagundogan@hotmail.com
e-mail: kecilioglu@kku.edu.tr
Abstract.
In this paper, a new matrix multiplication is defined in
Rnm ×
Rpn by using Lorentzian inner product in
Rn,
where Rnm
is set of matrices of
m rows
and n columns. With this multiplication it has been shown that
Rnn
is an algebra with unit. By means of orthogonal matrices
with
respect to this multiplication, coordinate transformations are defined on
n-dimensional Lorentz space Ln.
As a special case, motions on
L2 Lorentz plane are obtained.
2000 Mathematics Subject Classification.
51M05, 53A17.
Key words and phrases. Lorentz space, rotation,
reflection.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.2.15
References:
- G. S. Birman and K. Nomizu,
Trigonometry in
Lorentzian geometry, Amer. Math. Monthly 91 (1984),
543-549.
MathSciNet
CrossRef
- G. S. Birman and K. Nomizu,
The Gauss-Bonnet theorem
for 2-dimensional spacetimes, Michigan Math. J. 31
(1984), 77-81.
MathSciNet
CrossRef
- A. A. Ergin,
On the 1-parameter Lorentzian motions,
Comm. Fac. Sci. Univ. Ankara Ser. A1 Math. Statist.
40 (1991), 59-66.
MathSciNet
- S. Lang,
Linear Algebra,
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills,
Ont. 1971.
MathSciNet
- J. M. McCarthy,
An Introduction to Theoretical
Kinematics, MIT Press, Cambridge, 1990.
MathSciNet
- B. O'Neill,
Semi-Riemannian Geometry. With Applications to Relativity,
Academic Press, Inc., New York, 1983.
MathSciNet
- J. G. Ratcliffe,
Foundations of Hyperbolic
Manifolds, Springer-Verlag, New York, 1994.
MathSciNet
Glasnik Matematicki Home Page