Glasnik Matematicki, Vol. 41, No.2 (2006), 317-328.
FRAMES OF SUBMODULES FOR COUNTABLY GENERATED HILBERT K(H)-MODULES
Ljiljana Arambašić
Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: ljsekul@math.hr
Abstract.
In this paper we introduce frames of submodules for
countably generated Hilbert K(H)-modules. We show the
correspondence between frames of submodules for a Hilbert
K(H)-module V and frames of subspaces for the Hilbert space
Ve ⊂ V, where e ∈ K(H)
is an arbitrary orthogonal
one-dimensional projection. We also establish a relation between
their frame operators.
2000 Mathematics Subject Classification.
46H25, 46L05, 46L99.
Key words and phrases. C*-algebra, Hilbert
C*-module, compact operator, frame, frame operator, frame of
subspaces, frame of submodules.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.2.14
References:
- Lj. Arambasic,
On frames for countably generated Hilbert C*-modules,
Proc. Amer. Math. Soc. 135 (2007), 469-478.
MathSciNet
CrossRef
- M. S. Asgari and A. Khosravi,
Frames and bases of subspaces in Hilbert
spaces, J. Math. Anal. Appl. 308 (2005), 541-553.
MathSciNet
CrossRef
- D. Bakic and B. Guljas,
Hilbert C*-modules
over C*-algebras of compact operators, Acta Sci. Math.
(Szeged) 68 (2002), 249-269.
MathSciNet
- P. G. Casazza,
The art of frame theory, Taiwanese J. Math 4 (2000),
129-201.
MathSciNet
- P. G. Casazza and G. Kutyniok,
Frames of subspaces,
Wavelets, frames and operator theory, in: Contemp. Math. 345,
Amer. Math. Soc., Providence, 2004, 87-113.
MathSciNet
- J. Dixmier,
C*-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
MathSciNet
- M. Frank and D. R. Larson,
A module frame concept for Hilbert C*-modules, in: Contemp.
Math. 247, Amer. Math. Soc., Providence, 1999, 207-233.
MathSciNet
- M. Frank and D. R. Larson,
Frames in Hilbert C*-modules and C*-algebras,
J. Operator Theory 48 (2002), 273-314.
MathSciNet
- M. Frank, V. I. Paulsen and T. R. Tiballi,
Symmetric
approximation of frames and bases in Hilbert spaces, Trans. Amer.
Math. Soc. 354 (2002), 777-793.
MathSciNet
CrossRef
- C. Lance, Hilbert C*-modules.
A Toolkit for Operator Algebraists, Cambridge University Press,
Cambridge, 1995.
MathSciNet
- B. Magajna,
Hilbert C*-modules in which all closed
submodules are complemented, Proc. Amer. Math. Soc. 125
(1997), 849-852.
MathSciNet
CrossRef
- I. Raeburn and S. J. Thompson,
Countably generated Hilbert modules,
the Kasparov stabilisation theorem, and frames in Hilbert
modules, Proc. Amer. Math. Soc. 131 (2003), 1557-1564.
MathSciNet
CrossRef
- J. Schweizer,
A description of Hilbert C*-modules in which
all closed submodules are orthogonally closed, Proc. Amer. Math.
Soc. 127 (1999), 2123-2125.
MathSciNet
CrossRef
- N. E. Wegge-Olsen,
K-theory and C*-algebras. A Friendly Approach, The Clarendon
Press, Oxford University Press, New York, 1993.
MathSciNet
Glasnik Matematicki Home Page