Glasnik Matematicki, Vol. 41, No.2 (2006), 317-328.

FRAMES OF SUBMODULES FOR COUNTABLY GENERATED HILBERT K(H)-MODULES

Ljiljana Arambašić

Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: ljsekul@math.hr


Abstract.   In this paper we introduce frames of submodules for countably generated Hilbert K(H)-modules. We show the correspondence between frames of submodules for a Hilbert K(H)-module V and frames of subspaces for the Hilbert space VeV, where eK(H) is an arbitrary orthogonal one-dimensional projection. We also establish a relation between their frame operators.

2000 Mathematics Subject Classification.   46H25, 46L05, 46L99.

Key words and phrases.   C*-algebra, Hilbert C*-module, compact operator, frame, frame operator, frame of subspaces, frame of submodules.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.2.14


References:

  1. Lj. Arambasic, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc. 135 (2007), 469-478.
    MathSciNet     CrossRef

  2. M. S. Asgari and A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl. 308 (2005), 541-553.
    MathSciNet     CrossRef

  3. D. Bakic and B. Guljas, Hilbert C*-modules over C*-algebras of compact operators, Acta Sci. Math. (Szeged) 68 (2002), 249-269.
    MathSciNet

  4. P. G. Casazza, The art of frame theory, Taiwanese J. Math 4 (2000), 129-201.
    MathSciNet

  5. P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, frames and operator theory, in: Contemp. Math. 345, Amer. Math. Soc., Providence, 2004, 87-113.
    MathSciNet

  6. J. Dixmier, C*-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
    MathSciNet

  7. M. Frank and D. R. Larson, A module frame concept for Hilbert C*-modules, in: Contemp. Math. 247, Amer. Math. Soc., Providence, 1999, 207-233.
    MathSciNet

  8. M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48 (2002), 273-314.
    MathSciNet

  9. M. Frank, V. I. Paulsen and T. R. Tiballi, Symmetric approximation of frames and bases in Hilbert spaces, Trans. Amer. Math. Soc. 354 (2002), 777-793.
    MathSciNet     CrossRef

  10. C. Lance, Hilbert C*-modules. A Toolkit for Operator Algebraists, Cambridge University Press, Cambridge, 1995.
    MathSciNet

  11. B. Magajna, Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125 (1997), 849-852.
    MathSciNet     CrossRef

  12. I. Raeburn and S. J. Thompson, Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames in Hilbert modules, Proc. Amer. Math. Soc. 131 (2003), 1557-1564.
    MathSciNet     CrossRef

  13. J. Schweizer, A description of Hilbert C*-modules in which all closed submodules are orthogonally closed, Proc. Amer. Math. Soc. 127 (1999), 2123-2125.
    MathSciNet     CrossRef

  14. N. E. Wegge-Olsen, K-theory and C*-algebras. A Friendly Approach, The Clarendon Press, Oxford University Press, New York, 1993.
    MathSciNet

Glasnik Matematicki Home Page