Glasnik Matematicki, Vol. 41, No.2 (2006), 283-297.
ISOPERIMETRIC INEQUALITIES FOR AN ELECTROSTATIC PROBLEM
L. Boukrim and T. Mekkaoui
Université My Ismaïl. F. S. T. Errachidia, Département de Mathématiques,
BP 509 Boutalamine Errachidia, Morocco
e-mail: boukrim05@yahoo.fr
e-mail: toufik_mekkaoui@yahoo.fr
Abstract.
We study the problem of the (p-)capacity cp of a
multiconnected configuration Ω = (G \ E) \
(∪ Hi)
when ∂G and
∂E
have given
potentials. Here Ω represents a nonhomogeneous medium and
the Hi, which separate the different connected components of
Ω, represent perfect conductors. By comparison with a
similar configuration with spherical symmetry, we give
isoperimetric inequalities for cp and the unknown potentials on
Hi.
2000 Mathematics Subject Classification.
26D10, 35J65.
Key words and phrases. Isoperimetric inequality, rearrangement, nonlinear
elliptic PDE's.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.2.11
References:
- A. Alvino and G. Trombetti,
Isoperimetric inequalities connected
with torsion problem and capacity, Boll. Un. Mat. Ital. B (6),
4 (1985), 773-787.
MathSciNet
- C. Bandle,
Isoperimetric Inequalities and Applications, Pitman, Boston,
Mass.-London, 1980.
MathSciNet
- L. Boukrim,
Inégalités isopérimétriques pour
un problème d'électrostatique, C. R. Acad. Sci. Paris
Sér. I Math. 318 (1994), 435-438.
MathSciNet
- L. Boukrim,
Inégalités isopérimétriques pour
certains problèmes de conductivité dans desmilieux non
homogènes, Doctoral Thesis, Université Paris-Sud, Orsay,
France, 1994.
- J. I. Diaz, Nonlinear Partial Differential Equations and Free
Boundaries I. Elliptic equations, Pitman, Boston, 1985.
MathSciNet
- V. Ferone,
Symmetrization results in electrostatic problems,
Ricerche Mat. 37 (1988), 359-370.
MathSciNet
- J. Mossino, Inégalités Isopérimétriques et
Applications en Physique, Hermann, Paris, 1984.
MathSciNet
- J. Mossino and R. Temam,
Directional derivative of the
increasing rearrangement mapping and application to a queer
differential equation in plasma physics, Duke Math. J.
48 (1981), 475-495.
MathSciNet
CrossRef
- M. K. V. Murthy and G. Stampacchia,
Boundary value problems for
some degenerate-elliptic operators, Ann. Mat. Pura Appl. (4)
80 (1968), 1-122.
MathSciNet
- G. Pólya,
Torsional rigidity,
principal frequency, electrostatic capacity and symmetrization,
Quart. Appl. Math. 6 (1948), 267-277.
MathSciNet
- G. Pólya and G. Szegö,
Isoperimetric Inequalities in Mathematical Physics, Princeton
University Press, Princeton, 1951.
MathSciNet
- J. M. Rakotoson,
Some properties of the relative
rearrangement, J. Math. Anal. Appl. 135 (1988), 488-500.
MathSciNet
CrossRef
- J. M. Rakotoson and R. Temam,
Relative rearrangement in
quasilinear elliptic variational inequalities, Indiana Univ.
Math. J 36 (1987), 757-810.
MathSciNet
CrossRef
Glasnik Matematicki Home Page