Glasnik Matematicki, Vol. 41, No.2 (2006), 259-269.

ON THE METACYCLIC EPIMORPHIC IMAGES OF FINITE p-GROUPS

Yakov Berkovich

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il


Abstract.   We prove that if G is a p-group of order pm > pn, where n > 3 for p = 2 and n > 2 for p > 2, then the number of normal subgroups D of G such that G/D is metacyclic of order pn is a multiple of p, unless G is metacyclic. We also give a very short and elementary proof of the following result: representation groups of nonabelian metacyclic p-groups are metacyclic.

2000 Mathematics Subject Classification.   20D15.

Key words and phrases.   Finite p-groups, metacyclic p-groups, minimal nonabelian p-groups, Schur multiplier, representation group.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.2.08


References:

  1. Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472-553.
    MathSciNet     CrossRef

  2. Y. Berkovich, Short proofs of some basic characterization theorems of finite p-group theory, Glas. Mat. Ser. III 41(61) (2006), 239-258.
    MathSciNet     CrossRef

  3. Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
    MathSciNet     CrossRef

  4. Y. Berkovich, Alternate proofs of some basic theorems of finite group theory, Glas. Mat. 40(60) (2005), 207-233.
    MathSciNet

  5. Y. Berkovich, Groups of Prime Power Order, Part I, in preparation.

  6. Ya. G. Berkovich and E. M. Zhmud, Characters of Finite Groups, Part 1, American Mathematical Society, Providence, 1998.
    MathSciNet

  7. N. Blackburn, On prime-power groups with two generators, Proc. Cambridge Philos. Soc. 54 (1958), 327-337.
    MathSciNet

  8. N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22.
    MathSciNet     CrossRef

  9. B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin-New York, 1967.
    MathSciNet

  10. I. M. Isaacs, Algebra. A Graduate Course, Brooks/Cole Publishing Co., Pacific Grove, 1994.
    MathSciNet

  11. I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York-London, 1976.
    MathSciNet

  12. G. Karpilovsky, Group Representations, Vol. 2, North-Holland Publishing Co., Amsterdam, 1993.
    MathSciNet

  13. A. Mann, Regular p-groups, Israel J. Math 10 (1971), 471-477.
    MathSciNet

  14. I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50.

  15. H. F. Tuan, A theorem about p-groups with abelian subgroups of index p, Acad. Sinica Science Record 3 (1950), 17-23.
    MathSciNet

Glasnik Matematicki Home Page