Glasnik Matematicki, Vol. 41, No.2 (2006), 259-269.
ON THE METACYCLIC EPIMORPHIC IMAGES OF FINITE p-GROUPS
Yakov Berkovich
Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il
Abstract.
We prove that if G is a p-group of order
pm > pn,
where n > 3 for p = 2 and
n > 2 for p > 2, then the number of
normal subgroups D of G such that G/D is metacyclic of order
pn is a multiple of p, unless
G is metacyclic. We also give
a very short and elementary proof of the following result:
representation groups of nonabelian metacyclic p-groups are
metacyclic.
2000 Mathematics Subject Classification.
20D15.
Key words and phrases. Finite p-groups, metacyclic p-groups, minimal
nonabelian p-groups, Schur multiplier, representation group.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.2.08
References:
- Y. Berkovich,
On subgroups and epimorphic images of finite
p-groups, J. Algebra 248 (2002), 472-553.
MathSciNet
CrossRef
- Y. Berkovich,
Short proofs of some basic characterization
theorems of finite p-group theory, Glas. Mat. Ser. III
41(61) (2006), 239-258.
MathSciNet
CrossRef
- Y. Berkovich,
On abelian subgroups of p-groups, J. Algebra
199 (1998), 262-280.
MathSciNet
CrossRef
- Y. Berkovich,
Alternate proofs of some basic theorems of
finite group theory, Glas. Mat. 40(60) (2005), 207-233.
MathSciNet
- Y. Berkovich,
Groups of Prime Power Order, Part I, in
preparation.
- Ya. G. Berkovich and E. M. Zhmud,
Characters of Finite
Groups, Part 1, American Mathematical Society, Providence, 1998.
MathSciNet
- N. Blackburn,
On prime-power groups with two generators,
Proc. Cambridge Philos. Soc. 54 (1958), 327-337.
MathSciNet
- N. Blackburn,
Generalizations of certain elementary theorems
on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22.
MathSciNet
CrossRef
- B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin-New
York, 1967.
MathSciNet
- I. M. Isaacs, Algebra. A Graduate Course,
Brooks/Cole Publishing Co., Pacific Grove, 1994.
MathSciNet
- I. M. Isaacs,
Character Theory of Finite Groups, Academic Press, New
York-London, 1976.
MathSciNet
- G. Karpilovsky, Group Representations, Vol. 2,
North-Holland Publishing Co., Amsterdam, 1993.
MathSciNet
- A. Mann,
Regular p-groups, Israel J. Math 10 (1971),
471-477.
MathSciNet
- I. Schur,
Über die Darstellung der endlichen Gruppen durch
gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50.
- H. F. Tuan,
A theorem about p-groups with abelian subgroups of
index p, Acad. Sinica Science Record 3 (1950), 17-23.
MathSciNet
Glasnik Matematicki Home Page