Glasnik Matematicki, Vol. 41, No.2 (2006), 239-258.
SHORT PROOFS OF SOME BASIC CHARACTERIZATION THEOREMS OF FINITE p-GROUP THEORY
Yakov Berkovich
Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il
Abstract.
We offer short proofs of such basic results of finite
p-group theory as theorems of Blackburn, Huppert, Ito-Ohara,
Janko, Taussky. All proofs of those theorems are based on the
following result: If G is a nonabelian metacyclic p-group and
R is a proper G-invariant subgroup of G', then G/R is not
metacyclic. In the second part we use Blackburn's theory of
p-groups of maximal class. Here we prove that a p-group G is
of maximal class if and only if
Ω2*(G) = 〈 x ∈
G | o(x) = p2 〉 is of maximal class. We also show that a
noncyclic p-group G of exponent > p contains two distinct
maximal cyclic subgroups A and B of orders > p such that
|A ∩ B| = p, unless p = 2 and G is dihedral.
2000 Mathematics Subject Classification.
20D15.
Key words and phrases. Finite p-groups, metacyclic p-groups, minimal
nonabelian p-groups, p-groups of maximal class, regular and
absolutely regular p-groups, powerful p-groups.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.2.07
References:
- Y. Berkovich,
On subgroups and epimorphic images of
finite p-groups, J. Algebra 248 (2002), 472-553.
MathSciNet
CrossRef
- Y. Berkovich,
Alternate proofs of some basic theorems of
finite group theory, Glas. Mat. Ser. III 40(60) (2005), 207-233.
MathSciNet
- Y. Berkovich,
Groups of Prime Power Order, Part I, in preparation.
- Y. Berkovich,
Alternate proofs of two theorems of Philip Hall
on finite p-groups, and some related results, J. Algebra
294 (2005), 463-477.
MathSciNet
CrossRef
- Y. Berkovich,
On the metacyclic epimorphic images of finite
p-groups, Glas. Mat. Ser. III 41(61) (2006), 259-269.
MathSciNet
CrossRef
- Y. Berkovich,
Finite p-groups with few minimal nonabelian
subgroups. With an appendix by Z. Janko, J. Algebra 297
(2006), 62-100.
MathSciNet
CrossRef
- Y. Berkovich and Z. Janko,
Groups of Prime Power Order, Part
II, in preparation.
- Y. Berkovich and Z. Janko,
Structure of finite $p$-groups
with given subgroups, in: Contemp. Math. 402, Amer. Math. Soc.,
Providence, 2006, 13-93.
MathSciNet
- Ya. G. Berkovich and E. M. Zhmud, Characters of Finite
Groups, Part 1, American Mathematical Society, Providence, 1998.
MathSciNet
- N. Blackburn,
On prime-power groups with two generators,
Proc. Cambridge Philos. Soc. 54 (1958), 327-337.
MathSciNet
- N. Blackburn,
Generalizations of certain elementary theorems
on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22.
MathSciNet
CrossRef
- N. Blackburn,
On a special class of p-groups, Acta Math.
100 (1958), 45-92.
MathSciNet
CrossRef
- B. Huppert,
Über das Produkt von paarweise vertauschbaren
zyklischen Gruppen, Math. Z. 58 (1953), 243-264.
MathSciNet
CrossRef
- I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York-London, 1976.
MathSciNet
- N. Ito and A. Ohara,
Sur les groupes factorisables par deux
2-groupes cycliques I, II, Proc. Japan Acad. 32 (1956),
736-743.
MathSciNet
- Z. Janko,
Finite 2-groups with no normal elementary abelian
subgroups of order 8, J. Algebra 246 (2001), 951-961.
MathSciNet
CrossRef
- Z. Janko,
On maximal cyclic subgroups in finite p-groups,
Math. Z. 254 (2006), 29-31.
MathSciNet
CrossRef
- Z. Janko,
Finite 2-groups with exactly four cyclic
subgroups of order 2n,
J. Reine Angew. Math. 566 (2004),
135-181.
MathSciNet
CrossRef
- Z. Janko,
Finite 2-groups G
with Ω2*(G)
metacyclic, Glas. Mat. Ser. III 41(61) (2006), 71-76.
CrossRef
- Z. Janko,
Finite 2-groups with exactly one nonmetacyclic
maximal subgroup, submitted.
- A. Lubotzky and A. Mann,
Powerful p-groups. I. Finite groups, J. Algebra
105 (1987), 484-505.
MathSciNet
CrossRef
- L. Redei,
Das "schiefe Produkt" in der Gruppentheorie mit Anwendung
auf die endlichen nichtkommutativen Gruppen mit lauter
kommutativen echten Untergruppen und die Ordnungszahlen, zu denen
nur kommutative Gruppen gehören, Comment. Math. Helv.
20 (1947), 225-264.
MathSciNet
Glasnik Matematicki Home Page