Glasnik Matematicki, Vol. 41, No.2 (2006), 223-231.
TRANSCENDENCE CRITERIA FOR PAIRS OF CONTINUED FRACTIONS
Boris Adamczewski and Yann Bugeaud
CNRS, Institut Camille Jordan, Université Claude Bernard Lyon 1, Bat. Braconnier,
21 avenue Claude Bernard, 69622 Villeurbanne, Cedex, France
e-mail: Boris.Adamczewski@math.univ-lyon1.fr
Université Louis Pasteur, U. F. R. de mathématiques,
7, rue René Descartes, 67084 Strasbourg, Cedex, France
e-mail: bugeaud@math.u-strasbg.fr
Abstract.
The aim of the present note is to establish two
extensions of some transcendence criteria for real numbers given
by their continued fraction expansions. We adopt the following
point of view: rather than giving sufficient conditions ensuring
the transcendence of a given number α, we take a pair
(α, α') of real numbers, and we prove that, under some
condition, at least one of them is transcendental.
2000 Mathematics Subject Classification.
11J81, 11J70.
Key words and phrases. Transcendence, continued fractions.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.2.05
References:
- B. Adamczewski and Y. Bugeaud,
On the complexity of algebraic
numbers. II. Continued fractions, Acta Math. 195 (2005), 1-20.
MathSciNet
CrossRef
- B. Adamczewski and Y. Bugeaud,
On the Maillet--Baker
continued fractions, J. Reine Angew. Math., to appear.
- B. Adamczewski and Y. Bugeaud,
Palindromic continued
fractions, Ann. Inst. Fourier (Grenoble), to appear.
- O. Perron, Die Lehre von den Ketterbrüchen. Teubner, Leipzig,
1929.
- W. M. Schmidt,
Norm form equations, Ann. of Math. (2) 96 (1972), 526-551.
MathSciNet
CrossRef
- W. M. Schmidt,
Diophantine Approximation, Springer, Berlin, 1980.
MathSciNet
Glasnik Matematicki Home Page