Glasnik Matematicki, Vol. 41, No.2 (2006), 205-216.
THE NON-EXTENSIBILITY OF D(4k)-TRIPLES
{1, 4k(k-1), 4k2+1} WITH |k| PRIME
Yasutsugu Fujita
Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
e-mail: fyasut@yahoo.co.jp
Abstract.
For a nonzero integer n, a set of m distinct
positive integers {a1, ... , am}
is called a D(n)-m-tuple
if aiaj+n
is a perfect square for each i, j with 1 ≤ i < j ≤ m.
Let k be an integer with |k| prime. Then we show that
the D(4k)-triple
{1, 4k(k-1), 4k2+1}
cannot be extended to a
D(4k)-quadruple.
2000 Mathematics Subject Classification.
11D09, 11D45.
Key words and phrases. Simultaneous Pell equations,
Diophantine tuples.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.2.03
References:
- F. S. Abu Muriefah and A. Al-Rashed,
On the
extendibility of the Diophantine triple {1,5,c},
Int. J. Math. Math. Sci. 33 (2004), 1737-1746.
MathSciNet
CrossRef
- J. Arkin, V. E. Hoggatt, and E. G. Straus,
On Euler's solution of a problem of Diophantus,
Fibonacci Quart. 17 (1979), 333-339.
MathSciNet
- A. Baker and H. Davenport,
The equations 3x2-2=y2
and 8x2-7=z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
MathSciNet
- E. Brown,
Sets in which xy+k is always a square,
Math. Comp. 45 (1985), 613-620.
MathSciNet
CrossRef
- A. Dujella,
Generalization of a problem of Diophantus,
Acta Arith. 65 (1993), 15-27.
MathSciNet
- A. Dujella,
The problem of the extension of a parametric
family of Diophantine triples,
Publ. Math. Debrecen 51
(1997), 311-322.
MathSciNet
- A. Dujella,
On the exceptional set in the problem of
Diophantus and Davenport, in: Applications of Fibonacci numbers,
Vol. 7, Kluwer Acad. Publ., Dordrecht, 1998, 69-76.
MathSciNet
- A. Dujella,
Diophantine quadruples and quintuples modulo 4,
Notes Number Theory Discrete Math. 4 (1998),
160-164.
MathSciNet
- A. Dujella,
Complete solution of a family of
simultaneous Pellian equations,
Acta Math. Inform. Univ.
Ostraviensis 6 (1998), 59-67.
MathSciNet
- A. Dujella,
A proof of the Hoggatt-Bergum conjecture,
Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
MathSciNet
CrossRef
- A. Dujella,
On the size of Diophantine m-tuples,
Math. Proc. Cambridge Philos. Soc. 132 (2002),
23-33.
MathSciNet
- A. Dujella,
There are only finitely many Diophantine
quintuples,
J. Reine Angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- A. Dujella,
Bounds for the size of sets with the
property D(n),
Glas. Mat. Ser. III 39(59) (2004),
199-205.
MathSciNet
- A. Dujella, A. Filipin, and C. Fuchs,
Effective solution
of the D(-1)-quadruple conjecture, preprint.
- A. Dujella and C. Fuchs,
Complete solution of a problem
of Diophantus and Euler,
J. London Math. Soc. (2) 71 (2005), 33-52.
MathSciNet
CrossRef
- A. Dujella and F. Luca,
Diophantine m-tuples for
primes, Int. Math. Res. Not. 47 (2005), 2913-2940.
MathSciNet
CrossRef
- A. Dujella and A. Pethö,
A generalization of a
theorem of Baker and Davenport,
Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
MathSciNet
CrossRef
- A. Dujella and A. M. S. Ramasamy,
Fibonacci numbers and
sets with the property D(4),
Bull. Belg. Math. Soc. Simon
Stevin 12 (2005), 401-412.
MathSciNet
- A. Filipin,
Nonextendibility of D(-1)-triples of the
form {1,10,c}, Int. J. Math. Math. Sci. 14
(2005), 2217-2226.
MathSciNet
CrossRef
- Y. Fujita,
The extensibility of D(-1)-triples
{1,b,c}, Publ. Math. Debrecen, to appear.
MathSciNet
- Y. Fujita,
The unique representation d = 4k(k2-1) in
D(4)-quadruples {k-2,k+2,4k,d}, Math. Commun., to appear.
MathSciNet
- Y. Fujita,
The extensibility of Diophantine pairs
{k - 1, k + 1}, preprint.
- P. Gibbs,
Some rational Diophantine sextuples, Glas.
Mat. Ser. III 41(61) (2006), 195-203.
MathSciNet
CrossRef
- H. Gupta and K. Singh,
On k-triad sequences,
Internat. J. Math. Math. Sci. 8 (1985), 799-804.
MathSciNet
CrossRef
- C. Long and G. E. Bergum,
On a problem of Diophantus,
in: Applications of Fibonacci numbers, Vol. 2, Kluwer Acad.
Publ., Dordrecht, 1988, 183-191.
MathSciNet
- E. M. Matveev,
An explicit lower bound for a homogeneous
rational linear form in logarithms of algebraic numbers, II,
Izv. Math. 64 (2000), 1217-1269.
MathSciNet
CrossRef
- V. K. Mootha and G. Berzsenyi,
Characterizations and
extendibility of Pt-sets, Fibonacci Quart. 27
(1989), 287-288.
MathSciNet
- S. P. Mohanty and A. M. S. Ramasamy,
On Pr,k sequences,
Fibonacci Quart. 23 (1985), 36-44.
MathSciNet
- R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1996.
MathSciNet
- T. Nagell, Introduction to Number Theory, John Wiley & Sons,
Inc., New York; Almqvist & Wiksell, Stockholm, 1951.
MathSciNet
- J. E. Shockley, Introduction to Number Theory, Holt, Rinehart
and Winston, Inc., New York-Toronto, Ont.-London, 1967.
MathSciNet
Glasnik Matematicki Home Page