Glasnik Matematicki, Vol. 41, No.1 (2006), 177-186.

LARGE TIME BEHAVIOR OF DIRICHLET HEAT KERNELS ON UNBOUNDED DOMAINS ABOVE THE GRAPH OF A BOUNDED LIPSCHITZ FUNCTION

Kittipat Wong

Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail: kittipat.w@chula.ac.th


Abstract.   Let D subset Rd, d 2 be the unbounded domain above the graph of a bounded Lipschitz function. We study the asymptotic behavior of the transition density pD(t,x,y) of killed Brownian motions in D and show that

limt → ∞ t(d+2)/2 pD(t,x,y) = C1u(x)u(y),

where u is a minimal harmonic function corresponding to the Martin point at infinity and C1 is a positive constant.

2000 Mathematics Subject Classification.   60J65, 35J05.

Key words and phrases.   Dirichlet heat kernels, asymptotic behavior, Brownian motions.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.1.15


References:

  1. D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001.
    MathSciNet

  2. P. Collet, S. Martinez and J. San Martin, Asymptotic behavior of a Brownian motion on exterior domains, Probab. Theory Related Fields 116 (2000), 303-316.
    MathSciNet     CrossRef

  3. J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, Berlin, 2001.
    MathSciNet

  4. J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134.
    MathSciNet     CrossRef

  5. R. G. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge Studies in Advanced Mathematics 45, Cambridge University Press, Cambridge, 1995.
    MathSciNet

  6. S. C. Port and C. J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978.
    MathSciNet

  7. N. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205-226.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page