Glasnik Matematicki, Vol. 41, No.1 (2006), 141-157.
HYPERSPACES WITH EXACTLY TWO ORBITS
Sam B. Nadler, Jr. and Patricia Pellicer-Covarrubias
S .B. Nadler, Jr., Department of Mathematics,
West Virginia University, P. O. Box 6310,
Morgantown, WV 26506-6310, USA
e-mail: nadler@math.wvu.edu
P. Pellicer-Covarrubias, Department of Mathematics,
West Virginia University, P. O. Box 6310, Morgantown, WV 26506-6310, USA
Departamento de Matemáticas, Facultad de Ciencias,
Circuito Exterior, Ciudad Universitaria, México, D. F., C. P. 04510,
México
e-mail: paty@ciencias.unam.mx
e-mail: paty@math.wvu.edu
Abstract. Let C(X) be the hyperspace of all subcontinua of a
(metric) continuum X. It is known that C(X) is homogeneous if
and only
if C(X) is the Hilbert cube. We are interested
in knowing when C(X) is
1/2-homogeneous, meaning that there are exactly two orbits for the
action of the group of homeomorphisms of C(X) onto
C(X). It is
shown that if X is a locally connected continuum or a
nondegenerate atriodic continuum, and if C(X) is
1/2-homogeneous, then X is an arc or a simple closed
curve. We do not know whether an arc and a simple closed curve are
the only continua X for which C(X) is
1/2-homogeneous.
2000 Mathematics Subject Classification.
54B20, 54F15.
Key words and phrases. Arc, arc-like, atriodic, chainable,
circle-like, connected im kleinen, continuum, finest monotone map,
Hilbert cube, homogeneous, 1/2-homogeneous,
1/n-homogeneous, hyperspace, layers (tranches), locally
connected, n-cell, n-fold hyperspace, n-fold symmetric
product, orbit, property of Kelley, simple closed curve, simple
triod, tree-like, triod.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.1.12
References:
- G. Acosta,
Continua with unique hyperspace, Continuum
Theory, Lecture Notes in Pure and Applied Mathematics 230, Marcel
Dekker, Inc., New York and Basel, 2002, 33-49.
MathSciNet
- R. H. Bing,
Higher-dimensional hereditarily indecomposable continua,
Trans. Amer. Math. Soc. 71 (1951), 267-273.
MathSciNet
CrossRef
- J. F. Davis and W. T. Ingram,
An atriodic tree-like continuum with positive span which admits
a monotone mapping to a chainable continuum,
Fund. Math. 131 (1988), 13-24.
MathSciNet
- J. Dugundji,
Topology, Allyn and Bacon, Inc., Boston, 1966.
MathSciNet
- J. T. Goodykoontz, Jr.,
Connectedness im kleinen and local
connectedness in 2X and C(X),
Pacific J. Math. 53 (1974), 387-397.
MathSciNet
- W. Hurewicz and H. Wallman,
Dimension Theory, Princeton
University Press, Princeton, N. J., 1948 (revised edition).
MathSciNet
- A. Illanes,
The hyperspace C2(X) for a finite
graph X is unique,
Glasnik Mat. 37 (2002), 347-363.
MathSciNet
- A. Illanes,
A model for the hyperspace C2(S1),
Questions and Answers Gen. Topology 22 (2004), 117-130.
MathSciNet
- A. Illanes and S. B. Nadler, Jr.,
Hyperspaces: Fundamentals and
Recent Advances, Pure and Applied Mathematics Series 216, Marcel
Dekker, Inc., New York and Basel, 1999.
MathSciNet
- W. T. Ingram,
An atriodic tree-like continuum with positive span,
Fund. Math. 77 (1972), 99-107.
MathSciNet
- J. Krasinkiewicz,
On homeomorphisms of the Sierpinski curve,
Comment. Math. 12 (1969), 255-257.
MathSciNet
- K. Kuratowski,
Topology, Vol. II, Academic Press, N. Y., 1968.
MathSciNet
- S. Macias and S. B. Nadler, Jr.,
Various types of local
connectedness in n-fold hyperspaces,
Topology Appl., to appear.
- S. B. Nadler, Jr.,
Hyperspaces of Sets - A Text with Research
Questions, Pure and Applied Mathematics Series, Vol. 49, Marcel
Dekker, Inc., New York and Basel, 1978.
MathSciNet
- S. B. Nadler, Jr.,
Continuum Theory: An Introduction, Pure and
Applied Mathematics Series, Vol. 158, Marcel Dekker, Inc., New
York, Basel and Hong Kong, 1992.
MathSciNet
- H. Patkowska,
On 1/2-homogeneous ANR-spaces,
Fund. Math. 132 (1989), 25-58.
MathSciNet
- J. T. Rogers, Jr.,
Continua with cones homeomorphic to
hyperspaces,
General Topology and Appl. 3 (1973), 283-289.
MathSciNet
CrossRef
- R. H. Sorgenfrey,
Concerning triodic continua,
Amer. J. Math. 66 (1944), 439-460.
MathSciNet
CrossRef
- E. S. Thomas, Jr.,
Monotone decompositions of irreducible continua,
Dissertationes Math. (Rozprawy Mat.) 50 (1966), 1-74.
MathSciNet
- J. van Mill,
Infinite-dimensional Topology: Prerequisites and
Introduction, North-Holland and Elsevier Sci. Publ. Co., Inc.,
Amsterdam, 1988.
MathSciNet
Glasnik Matematicki Home Page