Glasnik Matematicki, Vol. 41, No.1 (2006), 141-157.

HYPERSPACES WITH EXACTLY TWO ORBITS

Sam B. Nadler, Jr. and Patricia Pellicer-Covarrubias

S .B. Nadler, Jr., Department of Mathematics, West Virginia University, P. O. Box 6310, Morgantown, WV 26506-6310, USA
e-mail: nadler@math.wvu.edu

P. Pellicer-Covarrubias, Department of Mathematics, West Virginia University, P. O. Box 6310, Morgantown, WV 26506-6310, USA
Departamento de Matemáticas, Facultad de Ciencias, Circuito Exterior, Ciudad Universitaria, México, D. F., C. P. 04510, México
e-mail: paty@ciencias.unam.mx
e-mail: paty@math.wvu.edu


Abstract.   Let C(X) be the hyperspace of all subcontinua of a (metric) continuum X. It is known that C(X) is homogeneous if and only if C(X) is the Hilbert cube. We are interested in knowing when C(X) is 1/2-homogeneous, meaning that there are exactly two orbits for the action of the group of homeomorphisms of C(X) onto C(X). It is shown that if X is a locally connected continuum or a nondegenerate atriodic continuum, and if C(X) is 1/2-homogeneous, then X is an arc or a simple closed curve. We do not know whether an arc and a simple closed curve are the only continua X for which C(X) is 1/2-homogeneous.

2000 Mathematics Subject Classification.   54B20, 54F15.

Key words and phrases.   Arc, arc-like, atriodic, chainable, circle-like, connected im kleinen, continuum, finest monotone map, Hilbert cube, homogeneous, 1/2-homogeneous, 1/n-homogeneous, hyperspace, layers (tranches), locally connected, n-cell, n-fold hyperspace, n-fold symmetric product, orbit, property of Kelley, simple closed curve, simple triod, tree-like, triod.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.1.12


References:

  1. G. Acosta, Continua with unique hyperspace, Continuum Theory, Lecture Notes in Pure and Applied Mathematics 230, Marcel Dekker, Inc., New York and Basel, 2002, 33-49.
    MathSciNet

  2. R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273.
    MathSciNet     CrossRef

  3. J. F. Davis and W. T. Ingram, An atriodic tree-like continuum with positive span which admits a monotone mapping to a chainable continuum, Fund. Math. 131 (1988), 13-24.
    MathSciNet

  4. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
    MathSciNet

  5. J. T. Goodykoontz, Jr., Connectedness im kleinen and local connectedness in 2X and C(X), Pacific J. Math. 53 (1974), 387-397.
    MathSciNet

  6. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, N. J., 1948 (revised edition).
    MathSciNet

  7. A. Illanes, The hyperspace C2(X) for a finite graph X is unique, Glasnik Mat. 37 (2002), 347-363.
    MathSciNet

  8. A. Illanes, A model for the hyperspace C2(S1), Questions and Answers Gen. Topology 22 (2004), 117-130.
    MathSciNet

  9. A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamentals and Recent Advances, Pure and Applied Mathematics Series 216, Marcel Dekker, Inc., New York and Basel, 1999.
    MathSciNet

  10. W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), 99-107.
    MathSciNet

  11. J. Krasinkiewicz, On homeomorphisms of the Sierpinski curve, Comment. Math. 12 (1969), 255-257.
    MathSciNet

  12. K. Kuratowski, Topology, Vol. II, Academic Press, N. Y., 1968.
    MathSciNet

  13. S. Macias and S. B. Nadler, Jr., Various types of local connectedness in n-fold hyperspaces, Topology Appl., to appear.

  14. S. B. Nadler, Jr., Hyperspaces of Sets - A Text with Research Questions, Pure and Applied Mathematics Series, Vol. 49, Marcel Dekker, Inc., New York and Basel, 1978.
    MathSciNet

  15. S. B. Nadler, Jr., Continuum Theory: An Introduction, Pure and Applied Mathematics Series, Vol. 158, Marcel Dekker, Inc., New York, Basel and Hong Kong, 1992.
    MathSciNet

  16. H. Patkowska, On 1/2-homogeneous ANR-spaces, Fund. Math. 132 (1989), 25-58.
    MathSciNet

  17. J. T. Rogers, Jr., Continua with cones homeomorphic to hyperspaces, General Topology and Appl. 3 (1973), 283-289.
    MathSciNet     CrossRef

  18. R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439-460.
    MathSciNet     CrossRef

  19. E. S. Thomas, Jr., Monotone decompositions of irreducible continua, Dissertationes Math. (Rozprawy Mat.) 50 (1966), 1-74.
    MathSciNet

  20. J. van Mill, Infinite-dimensional Topology: Prerequisites and Introduction, North-Holland and Elsevier Sci. Publ. Co., Inc., Amsterdam, 1988.
    MathSciNet

Glasnik Matematicki Home Page