Glasnik Matematicki, Vol. 41, No.1 (2006), 101-114.

HOMOGENIZATION OF RANDOM DEGENERATED NONLINEAR MONOTONE OPERATORS

J. Engström, L.-E. Persson, A. Piatnitski and P. Wall

J. Engström, Department of Mathematics, Luleå, University of Technology, SE-971 87 Luleå, Sweden

L.-E. Persson, Department of Mathematics, Luleå, University of Technology, SE-971 87 Luleå, Sweden

A. Piatnitski, Narvik University College, N-8505 Narvik, Norway
P. N. Lebedev Physical Institute of RAS, Leninski pr., 53, Moscow 119991, Russia

P. Wall, Department of Mathematics, Luleå, University of Technology, SE-971 87 Luleå, Sweden


Abstract.   This paper deals with homogenization of random nonlinear monotone operators in divergence form. We assume that the structure conditions (strict monotonicity and continuity conditions) degenerate and are given in terms of a weight function. Under proper integrability assumptions on the weight function we construct the effective operator and prove the homogenization result.

2000 Mathematics Subject Classification.   35B27, 35B40.

Key words and phrases.   Stochastic homogenization, random operators, degenerated monotone operators.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.1.10


References:

  1. G. Allaire, A. Braides, G. Buttazzo, A. Defranceschi and L. Gibiansky, School on Homogenization. Lecture Notes of the Courses held at ICTP, Trieste, 4-7 September 1993. Preprint SISSA, Trieste, 1993.

  2. R. De Arcangelis and F. Serra Cassano, On the homogenization of degenerate elliptic equations in divergence form, J. Math. Pures Appl. (9) 71 (1992), 119-138.
    MathSciNet

  3. M. Avellaneda and A. Majda, An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows, Comm. Math. Phys. 138 (1991), 339-391.
    MathSciNet     CrossRef

  4. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978.
    MathSciNet

  5. G. Bouchitté and I. Fragalà, Homogenization of thin structures by two-scale method with respect to measures, SIAM J. Math. Anal. 32 (2001), 1198-1226.
    MathSciNet     CrossRef

  6. A. Bourgeat, A. Mikelic and S. Wright, Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math. 456 (1994), 19-51.
    MathSciNet

  7. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford University Press, New York, 1998.
    MathSciNet

  8. D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, Oxford, 1999.
    MathSciNet

  9. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal function and singular integrals, Studia Math. 51 (1974), 241-250.
    MathSciNet

  10. N. Dunford and J. T. Schwartz, Linear Operators, Wiley, New York, 1957.

  11. J. Engström, Some Contribution to Homogenization Theory, Licentiate thesis 2002:34, Luleå University of Technology, Luleå, 2002.

  12. U. Hornung, Homogenization and Porous Media, Springer-Verlag, New York, 1997.
    MathSciNet

  13. V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin-Heidelberg-New York, 1994.
    MathSciNet

  14. S. Kozlov, Averaging of random operators, Math. USSR-Sb 37 (1980), 167-180.
    MathSciNet     CrossRef

  15. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969.
    MathSciNet

  16. D. Lukkassen and P. Wall, Two-scale convergence with respect to measures and homogenization of monotone operators, J. Funct. Spaces Appl. 3 (2005), 125-161.
    MathSciNet

  17. A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators, Mathematics and Its Applications 422, Kluwer Academic Publishers, London, 1997.
    MathSciNet

  18. L.-E. Persson, L. Persson. N. Svanstedt and J. Wyller. The Homogenization Method: An Introduction, Studentlitteratur, Lund, 1993.
    MathSciNet

  19. S. R. Varadhan, Boundary value problems with rapidly ocsillating random coefficients, Colloq. Math. Soc. János Bolyai 27 (1981), 835-873.
    MathSciNet

  20. V. V. Zhikov, On a homogenization technique for variational problems, Funct. Anal. Appl. 33 (1999), 11-24.
    MathSciNet     CrossRef

  21. V. V. Zhikov, On an extension and an application of two-scale convergence method, Math. Sb. 191 (2000), 31-72.
    MathSciNet

Glasnik Matematicki Home Page