Glasnik Matematicki, Vol. 41, No.1 (2006), 101-114.
HOMOGENIZATION OF RANDOM DEGENERATED NONLINEAR MONOTONE OPERATORS
J. Engström, L.-E. Persson, A. Piatnitski and P. Wall
J. Engström, Department of Mathematics, Luleå, University of Technology,
SE-971 87 Luleå, Sweden
L.-E. Persson, Department of Mathematics, Luleå, University of Technology,
SE-971 87 Luleå, Sweden
A. Piatnitski, Narvik University College, N-8505 Narvik, Norway
P. N. Lebedev Physical Institute of RAS, Leninski pr., 53, Moscow 119991, Russia
P. Wall, Department of Mathematics, Luleå, University of Technology,
SE-971 87 Luleå, Sweden
Abstract. This paper deals with homogenization of random nonlinear monotone
operators in divergence form. We assume that the structure
conditions (strict monotonicity and continuity conditions)
degenerate and are given in terms of a weight function. Under
proper integrability assumptions on the weight function we
construct the effective operator and prove the homogenization
result.
2000 Mathematics Subject Classification.
35B27, 35B40.
Key words and phrases. Stochastic
homogenization, random operators, degenerated monotone operators.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.1.10
References:
- G. Allaire, A. Braides, G. Buttazzo, A. Defranceschi and L. Gibiansky,
School on Homogenization. Lecture Notes of the Courses
held at ICTP, Trieste, 4-7 September 1993. Preprint SISSA,
Trieste, 1993.
- R. De Arcangelis and F. Serra Cassano,
On the homogenization of
degenerate elliptic equations in divergence form,
J. Math. Pures Appl. (9) 71 (1992), 119-138.
MathSciNet
- M. Avellaneda and A. Majda,
An integral representation
and bounds on the effective diffusivity in passive advection by
laminar and turbulent flows,
Comm. Math. Phys. 138 (1991), 339-391.
MathSciNet
CrossRef
- A. Bensoussan, J.-L. Lions and G. Papanicolaou,
Asymptotic Analysis for Periodic Structures, North Holland,
Amsterdam, 1978.
MathSciNet
- G. Bouchitté and I. Fragalà,
Homogenization of
thin structures by two-scale method with respect to measures,
SIAM J. Math. Anal. 32 (2001), 1198-1226.
MathSciNet
CrossRef
- A. Bourgeat, A. Mikelic and S. Wright,
Stochastic two-scale convergence in the mean and applications,
J. Reine Angew. Math. 456 (1994), 19-51.
MathSciNet
- A. Braides and A. Defranceschi,
Homogenization of Multiple Integrals, Oxford University Press, New York, 1998.
MathSciNet
- D. Cioranescu and P. Donato,
An Introduction to
Homogenization, Oxford University Press, Oxford, 1999.
MathSciNet
- R. R. Coifman and C. Fefferman,
Weighted norm inequalities
for maximal function and singular integrals,
Studia Math. 51 (1974), 241-250.
MathSciNet
- N. Dunford and J. T. Schwartz,
Linear Operators,
Wiley, New York, 1957.
- J. Engström,
Some Contribution to Homogenization
Theory, Licentiate thesis 2002:34, Luleå University of
Technology, Luleå, 2002.
- U. Hornung, Homogenization and Porous Media,
Springer-Verlag, New York, 1997.
MathSciNet
- V. V. Jikov, S. M. Kozlov and O. A. Oleinik,
Homogenization of Differential Operators and Integral
Functionals, Springer-Verlag, Berlin-Heidelberg-New York, 1994.
MathSciNet
- S. Kozlov,
Averaging of random operators,
Math. USSR-Sb 37 (1980), 167-180.
MathSciNet
CrossRef
- J.-L. Lions, Quelques méthodes de résolution des problèmes
aux limites non linéaires,
Dunod Gauthier-Villars, Paris, 1969.
MathSciNet
- D. Lukkassen and P. Wall,
Two-scale convergence with
respect to measures and homogenization of monotone operators,
J. Funct. Spaces Appl. 3 (2005), 125-161.
MathSciNet
- A. Pankov,
G-convergence and Homogenization of
Nonlinear Partial Differential Operators, Mathematics and Its
Applications 422, Kluwer Academic Publishers, London, 1997.
MathSciNet
- L.-E. Persson, L. Persson. N. Svanstedt and J. Wyller.
The Homogenization Method: An Introduction, Studentlitteratur,
Lund, 1993.
MathSciNet
- S. R. Varadhan,
Boundary value problems
with rapidly ocsillating random coefficients,
Colloq. Math. Soc. János Bolyai 27 (1981), 835-873.
MathSciNet
- V. V. Zhikov,
On a homogenization technique for
variational problems,
Funct. Anal. Appl. 33 (1999), 11-24.
MathSciNet
CrossRef
- V. V. Zhikov,
On an extension and an application of two-scale
convergence method, Math. Sb. 191 (2000), 31-72.
MathSciNet
Glasnik Matematicki Home Page