Glasnik Matematicki, Vol. 41, No.1 (2006), 89-99.
A NOTE ON CALCULATION OF ASYMPTOTIC ENERGY FOR
GINZBURG-LANDAU FUNCTIONAL WITH ε-DEPENDENT 1-LIPSCHITZ
PENALIZING TERM IN ONE DIMENSION
Andrija Raguž
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: andrija@math.hr
Abstract. We study asymptotic behavior of the Ginzburg-Landau
functional
as ε → 0,
where (gε) is a given sequence of
1-Lipschitz functions. In cases where the sequence (gε)
possesses some additional properties we calculate (rescaled)
minimal macroscopic energy associated to
Iεgε as
ε → 0.
Thus we obtain partial generalization of our
previous results.
2000 Mathematics Subject Classification.
34E15, 49J45.
Key words and phrases. Young measures, relaxation, Ginzburg-Landau functional,
Gamma convergence.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.1.09
References:
- G. Alberti and S. Müller,
A new approach to variational problems with multiple scales,
Comm. Pure Appl. Math. 54 (2001), 761-825.
MathSciNet
CrossRef
- J. M. Ball,
A version of the fundamental theorem for
Young measures, PDE's and Continuum Models of Phase Transitions,
Lecture Notes in Physics 344, Springer, Berlin, 1989, 207-215.
MathSciNet
- R. Choksi,
Scaling laws in microphase
separation of diblock copolymers,
J.Nonlinear Sci. 11 (2001), 223-236.
MathSciNet
- G. Dal Maso,
An Introduction to Γ-convergence,
Progress in Nonlinear Differential
Equations, Birkhäuser, Boston, 1993.
MathSciNet
- A. DeSimone, R. V. Kohn, S. Müller and F. Otto,
Magnetic microstructures - a paradigm of multiscale
problems, ICIAM 99, Oxford Univ. Press (2000), 175-190.
MathSciNet
- L. C. Evans and R. F. Gariepy,
Measure theory and fine properties of functions,
CRC Press, Boca Raton, 1992.
MathSciNet
- L. Modica and S. Mortola,
Un esempio di Γ-convergenza,
Boll. Un. Mat. Ital. B (5) 14 (1977), 285-299.
MathSciNet
- S. Müller,
Singular perturbations
as a selection criterion for periodic minimizing sequences,
Calc. Var. Partial Differential Equations 1 (1993), 169-204.
MathSciNet
- S. Müller, Private communication.
- A. Raguz,
Relaxation of Ginzburg-Landau
functional with 1-Lipschitz penalizing term in one dimension by
Young measures on micro-patterns,
Asymptotic Anal. 41 (2005), 331-361.
MathSciNet
- A. Raguz,
A note on calculation of asymptotic energy for
Ginzburg-Landau functional with externally imposed lower-order
oscillatory term in one dimension, submitted.
- L. Tartar,
Beyond Young measures,
Meccanica 30 (1995), 505-526.
MathSciNet
CrossRef
- L. C. Young,
Lectures on the calculus of
variations and optimal control theory, Chelsea Publishing
Company, New York, 1980.
Glasnik Matematicki Home Page